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Preface

This book is divided into two parts. Part | isamodern introduction to the very
classical theory of submanifold geometry. We go beyond the classical theory in
at least one important respect; we study submanifolds of Hilbert space as well
as of Euclidean spaces. Part 11 isdevoted to critical point theory, and here again
the theory is developed in the setting of Hilbert manifolds. The two parts are
inter-related through the Morse Index Theorem, that is, the fact that the structure
of the set of critical points of the distance function from apoint to asubmanifold
can be described completely in terms of the local geometric invariants of the
submanifold.

Now it is perfectly standard and natural to study critical point theory in
infinite dimensions; one of the major applications of critical point theory isto
the Calculus of Variations, where an infinite dimensiona setting is essential.
But what is the rationale for extending the classical theory of submanifolds to
Hilbert space? The elementary theory of Riemannian Hilbert manifolds was
developed in the 1960’s, including for example the existence of Levi-Civita
connections, geodesic coordinates, and some local theory of submanifolds. But
Kuiper’'s proof of the contractibility of the group of orthogonal transformations
of an infinite dimensional Hilbert space was discouraging. It meant that one
could not expect to obtain interesting geometry and topology from the study of
Riemannian Hilbert manifolds with the seemingly natural choice of structure
group, and it was soon realized that a natural Fredholm structure was probably
necessary for an interesting theory of infinite dimensional Riemannian mani-
folds. However, for many years there were few interesting examples to inspire
further work in this area. The recent development of Kac-Moody groups and
their representation theory has changed this picture. The coadjoint orbits of
these infinite dimensional groups are nice submanifolds of Hilbert space with
natural Fredholm structures. Moreover they arise in the study of gauge group
actions and have arich and interesting geometry and topology. Best of all from
our point of view, they are isoparametric (see below) and provide easily stud-
ied explicit models that suggest good assumptions to make in order to extend
classical Euclidean submanifold theory to a theory of submanifolds of Hilbert
space.
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One of the main goals of part | is to help graduate students get started
doing research in Riemannian geometry. As aresult we havetried to makeit a
reasonably self-contained source for learning the techniques of the subject. We
do assumethat the reader isfamiliar with the elementary theory of differentiable
manifolds, as presented for example in Lang’s book [La], and the basic theory
of Riemannian geometry asin Hicks book [HK], or selected parts of Spivak’s
[Sp]. But in Chapter 1 we give a review of finite dimensional Riemannian
geometry, with emphasis on the techniques of computation. We use Cartan’s
moving frame method, alwaystrying to emphasi ze the intrinsic meaning behind
seemingly non-invariant computations. We aso give many exercises that are
meant as an introduction to a variety of interesting research topics. The local
geometry of submanifoldsof R"™ istreated in Chapter 2. In Chapter 3 we apply
the local theory to study Weingarten surfacesin R? and S2. Thefocal structure
of submanifolds and its relation to the critical point structure of distance and
height functions are explained in Chapter 4. Theremaining chaptersin part| are
devoted to two problems, the understanding of which is a natural step towards
developing a more general theory of submanifolds.

(1) Classify the submanifolds of Hilbert space that have the “simplest local
invariants’, namely the so-called isoparametric submanifolds. (A sub-
manifold is called isoparametric if its normal curvature is zero and the
principal curvatures along any parallel normal field are constant).

(2) Developtherelationship betweenthe geometry and thetopol ogy of isopara-
metric submanifolds.

Many of these*simple” submanifolds arise from representation theory. In
particular the generalized flag manifolds (principal orbits of adjoint representa
tions) are isoparametric and so are the principal orbits of other isotropy repre-
sentations of symmetric spaces. In fact it is now known that all homogeneous
isoparametric submanifolds arise in this way, so that they are effectively clas-
sified. But there are also many non-homogeneous examples. In fact, problem
(1) isfar from solved, and the ongoing effort to better understand and classify
isoparametric manifolds has given riseto abeautiful interplay between Rieman-
nian geometry, algebra, transformation group theory, differential equations, and
Morse theory.

In Chapter 5 we devel op the basic theory of proper Fredholm Riemannian
group actions (for both finite and infinite dimensions). In Chapter 6 we study
the geometry of finite dimensiona isoparametric submanifolds. In Chapter
7 we develop the basic theory of proper Fredholm submanifolds of Hilbert
space (the condition “ proper Fredholm” isneeded in order to use the techniques
of differential topology and Morse theory on Hilbert manifolds). Findly, in
chapter 8, we use the Morse theory developed in part |1 to study the homology
of isoparametric submanifolds of Hilbert space.

Part Il of the book is a self-contained account of critical point theory on
Hilbert manifolds. In Chapters9wedevel op the standard critical point theory for
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non-degenerate functions that satisfy Condition C: the deformation theorems,
minimax principal, and Morse inequalities. We then develop the theory of
linking cycles in Chapters 10; this is used in Chapter 8 of Part | to compute
the homology of isoparametric submanifolds of Hilbert space. In Chapter 11,
we apply our abstract critical point theory to the Calculus of Variations. We
treat first the easy case of geodesics, where the abstract theory fits like a glove.
We then consider a model example of the more complex “multiple integral”
problems in the Calculus of Variations; the so-called Yamabe Problem, that
arises in the conformal deformation of a metric to constant scalar curvature.
Here we illustrate some of the major techniques that are required to make the
abstract theory work in higher dimensions.

This book grew out of lectures we gave in Chinain May of 1987. Over a
year before, Professor S.S. Chern had invited the authors to visit the recently
established Nankai Mathematics ingtitute in Tianjin, China, and lecture for a
month on a subject of our choice. Word had already spread that the new Insti-
tute was an exceptionally pleasant place in which to work, so we were happy to
accept. And since we were just then working together on some problems con-
cerning isoparametric submanifolds, we soon decided to give two inter-related
series of lectures. One series would be on isoparametric submanifolds; the
other would be on aspects of Morse Theory, with emphasis on our generaliza-
tion to the isoparametric case of the Bott-Samelson technique for calculating
the homology and cohomology of certain orbits of group actions. At Professor
Chern’srequest we started to write up our lecture notesin advance, for eventual
publication asavolumein anew Nankai Institute sub-series of the Springer Ver-
lag Mathematical Lecture Notes. Despite all good intentions, when we arrived
in Tianjin in May of 1987 we each had only about a week’s worth of lectures
written up, and just rough notes for the rest. Perhaps it was for the best! We
were completely surprised by the nature of the audience that greeted us. Eighty
graduate students and young faculty, interested in geometry, had come to Tian-
jin from all over Chinato participate in our mini courses. From the beginning
this was as bright and enthusiastic a group of students as we have lectured to
anywhere. Moreover, before we arrived, they had recelved considerable back-
ground preparation for our lectures and were soon clamoring for us to pick up
the pace. Perhaps we did not see as much of the wonderful city of Tianjin as
we had hoped, but nevertheless we spent a very happy month talking to these
students and scrambling to prepare appropriate lectures. Oneresult wasthat the
scope of these notes has been considerably expanded from what was originally
planned. For example, the Hilbert space setting for the part on Morse Theory
reflects the students desire to hear about the infinite dimensional aspects of the
theory. And the part on isoparametric submanifolds was expanded to a general
exposition of the modern theory of submanifolds of space forms, with material
on orbital geometry and tight and taut immersions. We would like to take this
opportunity to thank those many students at Nankai for the stimulation they
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provided.

We will never forget our month at Nankai or the many good friends we
made there. We would like to thank Professor and Mrs. Chern and all of the
faculty and staff of the Mathematics Institute for the boundless effort they put
into making our stay in Tianjin so memorable.

After thefirst draft of these noteswaswritten, weused themin adifferential
geometry seminar at Brandeis University. We would like to thank the many
students who lectured in this seminar for the errors they uncovered and the
many improvements that they suggested.

Both authors would like to thank The National Science Foundation for its
support during the period on which we wrote and did research on this book.
We would also like to express our appreciation to our respective Universities,
Brandeis and Northeastern, for providing us with an hospitable envoironment
for the teaching and research that led up to its publication.

And finally wewould both like to express to Professor Chern our gratitude
for his having been our teacher and guide in differential geometry. Of course
there is not a geometer alive who has not benefited directly or indirectly from
Chern, but we feel particularly fortunate for our many personal contacts with
him over the years.
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Part 1. Submanifold Theory.






Chapter 1

Preliminaries

In this chapter we review some basic facts concerning connections and
the existence theory for systems of first order partial differential equations.
These are basic tools for the study of submanifold geometry. A connection is
defined both globally as adifferential operator (Koszul’s definition) and locally
as connection 1-forms (Cartan’s formulation). While the global definition is
better for interpreting the geometry, the local definition is easier to compute
with. A first order system of partial differential equations can be viewed as a
system of equationsfor differential 1-forms, and the associated existence theory
isreferred to as the Frobenius theorem.

1.1. Connectionson a vector bundle

Let M be a smooth manifold, £ a smooth vector bundle of rank £ on M, and
C° (&) the space of smooth sections of €.

1.1.1. Definition. A connection for £ isalinear operator
V%) —» C*(IT"M ©¢)

such that
V(fs)=df @ s+ fV(s)

forevery s € C*°(¢) and f € C°°(M). Wecall V(s) the covariant derivative
of s.

If ¢ istrivial, i.e, ¢ = M x RF, then C™(¢) can be identified with
C>®(M,R*) by s(x) = (z, f(x)). The differential of maps gives a trivial
connectionon &, i.e., Vs(z) = (z,df,). The collection of al connections on
& can be described as follows. We call k£ smooth sections sq,...,s; of £ a
frame field of £ if s1(x),...,si(x) isabasisfor thefiber &, at every z € M.
Then every section of £ can be uniquely written asasum fis; + ... + frSk,
where f; are uniquely determined smooth functionson M. A connection V on
¢ is uniquely determined by V(s1), ..., V(sx), and these can be completely
arbitrary smooth sections of the bundle 7* M ® &. Each of the sections V (s;)
can bewritten uniquely asasum ) | w;; ® s;, where (w;;) isanarbitrary n x n

3



4 Part | Submanifold Theory

matrix of smooth real-valued oneformson M. Infact, givenV(s1), ..., V(sk)
we can define V for an arbitrary section by the formula

V(fisi+ -+ frsg) = Z(dfi ® s; + fiV(s:)).

(Here and in the sequel we use the convention that > always stands for the
summeation over all indices that appear twice).

Suppose U is asmall open subset of M such that £|U istrivid. A frame
field sy, ..., s of £|U iscaled alocal framefield of £ on U.

It follows from the definition that a connection V is alocal operator, that
is, if s vanishes on an open set U then Vs aso vanisheson U. In fact, since
s(p) = 0andds, = 0imply Vs(p) = 0, V isafirst order differential operator
([Pa3]).

Since a connection is a local operator, it makes sense to talk about its
restriction to an open subset of M. If a collection of open sets U,, covers M
suchthat £|U,, istrivial, then aconnection V on & isuniquely determined by its
restrictionsto thevariousU,,. Let sq, ..., s, bealoca framefield on U,,, then
there exists unique n x n matrix of smooth real-valued one forms (w;;) on U,
such that V(Sz) = Zwij & S

Let GL (k) denote the Lie group of the non-singular k& x k real matrices,
and gl (k) itsLiealgebra If s; and s} aretwo local framefieldsof £ on U, then
there is a uniquely determined smooth map g = (g;;) : U — GL(k) such that
st =>"gijs;. Let g7t = (¢*) denotetheinverse of g, sothat s; = Zgijs;f.

Suppose
Vsi:Zwij@)sj, st:Zw;‘j@)s;.

Letw = (w;;) and w™ = (wy;). Since

m k

= Z(Z dgimgmj + Z gik‘-"}kmgmj)S;lf
J m m,k

= Z%’S;’
J

we have

w* = (dg)g™" + gwg™".

Given an open cover U, of M andlocal framefields {s$'} on U, suppose

s¢ =5 ?jﬂ)sf onU, NUs. Let g*F = ( f‘jﬁ). Then a connection on &

is defined by a collection of gl(k)—vaued 1-forms w® on U, such that on
Un N Us wehavew® = (dg®?)(g??) =t + g*Puw(g*8)~1.
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Identify 7% M ® & with L(T'M,¢), and let V x s denote (Vs)(X). For
X, Y e C®°(TM)and s € C*(£) wedefine

K(X,Y)(s) = =(VxVy = VyVx = Vix y])(s). (1.1.1)
It follows from a direct computation that
K(Y,X)=-K(X,Y),
K(fX,Y) = KX, fY) = fK(X,Y),
K(X,Y)(fs) = FEK(X,Y)(s).
Hence K isasmooth section of L(€ @ A\>TM, &) ~ L(E, N> T*M & €).

1.1.2. Definition. Thissection K of the vector bundle L (&, A T*M © &) is
called the curvature of the connection V.

Recall that the bracket operation on vector fields and the exterior differen-
tiation on p forms are related by

dw(Xo, ..., Xp) =Y (1) Xiw(Xo,..., Xi, ..., Xp)
+ 3 (D)X, X, X, Xy XL X,

1<J

Suppose s1, . .., si isalocal framefieldon U, and Vs; = > w;; ® s;.
Then there exist 2-forms €2;; such that

K(Sl) = ZQ” X Sj.

Since
—K(X,Y)(s;) = VxVys; = VyVxs; — Vix y]si

=Vx(D_wij(V)s;) = Vy(D_wij(X)s;)

— Zwij X Y])Sj
=) (X (wi (Y Y(wfzj(X)) —wii ([X, YT]))s;
+ ) (@i (V)wjn(X) = wij (X)wje(Y))sk

= Z dwij - Zwik /\wkj)(X7 Y) S E

we have
= dw;j — szk A Wj.
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Thus K canislocally described by the & x k& matrix @ = (£2;;) of 2-forms just
as'V isdefined locally by the matrix w = (w;;) of 1-forms. In matrix notation,
we have

—Q=dw—wAw. (1.1.3)

Let g = (gi;) : U — GL(k) be asmooth map and let w = (dg)g™".
Thenwisagl(k)— valued 1-formon U, satisfying the so-called Maurer-Cartan
equation

dw=wAw.

Conversely, given a gl(k)— valued 1-form on U with dw = w A w., it follows
from Frobenius theorem (cf. 1.4) that givenany zo € U and go € GL(k) there
isaneighborhood Uy of o in U and asmooth map g = (gi;) : Uy — GL(k)
such that g(zg) = go and (dg)g~! = w. Thusdw = w A w is a necessary
and sufficient condition for being able to solve locally the system of first order
partial differential equations:

dg = wg. (1.1.4)

Let e; denote the i** row of the matrix g and w = (wij). Then (1.1.4) can be

rewritten as
de; = Zwij ® e;.
J

1.1.3. Definition. A smooth section s of £|U is parallel with respect to V if
Vs=0onU.

1.1.4. Definition. A connectionisflat if its curvatureis zero.

1.1.5. Proposition.  The connection V on ¢ isflat if and only if there exist
local parallel frame fields.

PROOF. Lets; andw = (w;;) be as before. Suppose 2 = 0, then w
satisfies the Maurer- Cartan equation dw = w A w. So locally there exists a
GL(k)— valued map g = (9ij) suchthat (dg)g~' = w. Letg~! = (¢%), and
s;i=>.9"s;. ThenVs; =3 w/; @ s}, and

W' =dg)g+9 " wg
= —9 '(dg)g g+ 9 (dg)g~'g=0

So s} isapardlel frame.  w

1.1.6. Definition. A connection V on ¢ iscalled globally flat if there exists a
paralel frame field defined on the whole manifold M.
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1.1.7. Example. Let ¢ bethetrivial vector bundie M x R¥, and V thetrivia
connection on & given by the differential of maps. Then a section s(z) =
(x, f(x)) ispardlel if and only if f isaconstant map, so V isglobally flat.

1.1.8. Remarks.
(1) If £ isnot atrivial bundle then no connection on £ can be globally flat.
(i) A flat connection need not be globally flat. For example, let M be
the Mobius band [0, 1] x R/ ~ (where (0,t) ~ (1,—t))). Then the trivia
connection on [0, 1] x R induces a flat connection on T'M. But since T M is
not a product bundle this connection is not globally flat.

Given zy € M, asmooth curve « : [0, 1] — M such that «(0) = xo and
vy € &, (thefiber of £ over x), then the following first order ODE

Vawv =0, v(0) =, (1.1.5)

has a unique solution. A solution of (1.1.5) is called a parallel field along «,
and v(1) is called the parallel translation of vy along a to «(1). Let P(«) :
€zo — &z, bethe map defined by P(«)(vg) = v(1) for closed curve o such
that a(0) = (1) = z(. The set of al these P(«) isasubgroup of GL (&, ),
that is called the holonomy group of V with respect to x. It iseasily seen that
V isglobally flat if and only if the holonomy group of V istrivial.

1.1.9. Definition. A local frame s; of vector bundle € is called parallel at a
point xo with respect to the connection V, if Vs;(zq) = 0 for al 7.

1.1.10. Proposition. Let V be a connection on the vector bundle £ on M.
Given oy € M, then there exist an open neighborhood U of xy and a frame
field defined on U, that is paralldl at z.

PRrROOF. Lets;bealoca framefield, Vs; = Zj w;j®s;,andw = (w;;).
Letzq,...,2, bealocal coordinate system near zo, and w = . fi(x) dx;,
for some smooth gl(k) valued maps f;. Let a; = fi(xo). Thena; € gl(k),
and g~ 'dg+w = 0 at o, where g(x) = exp(}_, z;a;). Sowehavedg g~ +
gwg~t =0axz,i.e,sf = gijs;ispaalel a zo, whereg = (g;;).

Let O(m, k) denote the Lie group of linear isomorphism that leave the
following bilinear form on R™** invariant:

m k
(z,y) = Zﬂfiyi - me+jym+j'
i=1 j=1

Soan (m + k) x (m + k) matrix A isin O(m, k) if and only if

A'EA=E, where E= diag(1,...,1,—1,...,-1),
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anditsLieagebrais:
o(m,k) ={A € gllm+k)| A'E + EA = 0}.
1.1.11. Definition. A rank (m + k) vector bundle ¢ is called an O(m, k)—
bundle (an orthogonal bundleif & = 0) if thereis asmooth section g of S2(£*)

suchthat g(x) isanon-degenerate bilinear formon &, of index k foral = € M.
A connection V on £ is said to be compatible with g if

X(g(S,t)) = g(vavt) + g(S, VXt),
foral X € C°(TM),s,t € C®(€).

SUppOse S1, . . . , Sm iSalocal framefield, g(s;, s;) = g¢;;, and
VSZ' = Zwij @ Sj-
J

Then V is compatible with ¢ if and only if
wG + Gw' = dG,
wherew = (w;;) and G = (g,;). In particular, if G = E as above, then
wE + Ew' =0, (1.1.6)
i.e., wisano(m,k)— valued 1-formon M.

The collection of all connections on ¢ does not have natural vector space
structure. However it does have a natural affine structure. In fact if V; and
V, are two connections on ¢ and f is a smooth function on M then the linear
combination fV; + (1 — f)V, isagain awell-defined connection on ¢, and
V1 — V3 isasmooth section of L(&,T*M ® &).

Next we consider connections on induced vector bundles. Given asmooth
map ¢ : N — M we can form the induced vector bundle o*£. Note that there
are canonical maps

P OF(8) = C=(p7¢),
" C®(T*M) — C®(T*N).

So there is a'so a canonical map

e  CF(T"M ®§) — CF(T*N ® ¢*f).
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1.1.12. Lemma. To each connection V on ¢ there corresponds a unique
connection ¢*V on the induced bundle ¢*¢ so that

(@™ V)(p"s) = p*(Vs).

For example, given alocal framefield sq, ..., s; over an open subset U
of M with V(Sl) = Zwij & Sj then

(@ V)(@*si) = Y ¢wi; @ ¢™s;,

i.e., the connection 1-form for p*V is p*w;;.

Suppose V; and V5 are connections on the vector bundles ¢; and &5 over
M. Then there is a natural connection V on &; ® &5 that satisfies the usual
“product rule’, i.e.,

V(s1 ®s2) = Vi(s1) ® sz + 51 ® Va(s2)

1.2. Levi-Civita Connections

Let M be an n-dimensional smooth manifold, and g a smooth metric on
M,ie, g€ C>®(S?T*M), such that g(z) is positive definite for all z € M
(or equivalently, TM is an orthogonal bundle). Suppose V is a connection on
T M, and given vector fields X and Y on M let

T(X,Y)=VxY -VyX — [X,Y].
It follows from a direct computation that we have

So T isasection of \> T*M & T M, called the torsion tensor of V.

1.2.1. De€finition. A connection V on T'M is said to be torsion free if its
torsion tensor 1’ is zero.

Letey,...,e, bealoca orthonormal tangent framefield on an open subset
Uof M,ie, e (x),...,e,(x) forms an orthonormal basis for 7'M, for all
xr € M. Wedenote by wy,...,w, thel-formsin U dua to ey, ..., e,, i.e,
satisfying w;(e;) = 6;;. Suppose

Vei = Zwij @ €;.
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It followsfrom (1.1.6) that V is compatible with g if and only if w;; +w;; = 0.
Thetorsioniszeroif and only if

leivej] = ) (wjnle:) — wirle;))ex. (1.2.1)

Then (1.1.2) and (1.2.1) imply that
dwy, = Zwl N Wik .

Let ¢; %, and ;. be the coefficients of [e;, e;] and w;; respectively, i.e.,

[eiaej] = E Cijk€k,
Wij = E YijkWk-

and

Then we have;
Yijk = —Vjik; Viki — Vikj = Cijk-

This system of linear equations for the ;. has a unique solution that is easily
found explicitly; namely

Yijk = 5(_Cijk + Cjki + Ckij)-
Equivalently, V 7 X isdetermined by the following equation:

9(VzX,Y) = %{9([5/» Z], X) +9([2, X],Y) = 9([X, Y], 2)
+X(9(Y,2)) +Y(9(2, X)) - Z(9(X,Y))}

, (1.2.2)

for all smooth vector field Y on M. So we have:

1.2.2. Theorem. Thereisaunigue connection V ona Riemannian manifold
(M, g) that istorsion free and compatible with g. This connection iscalled the
Levi-Civita connection of g. If eq, ..., e, isalocal orthonormal frame field of

TM andwn, ... ,w, isitsdual coframe, then the Levi-Civita connection 1-form
w;; of g are characterized by the following “ structure equations’ :

dwi = ij A\ Wjia wij + wji = 0,
or equivalently

dw; = Zwij Nwj, wij +Wwj; = 0. (123)
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1.2.3. Definition. The curvature of the Levi-Civita connection of (M, g) is
called the Riemann tensor of g.

Let w = (w;;) bethe Levi-Civita connection 1-form of g, and 2 = (€2;;)
the Riemann tensor. It follows from (1.1.3) that we have

dw —wAw = —€. (1.2.4)

Thisiscalled the curvature equation. Write

1
Qij = 5 Z Rijklwk N wy (1.2.5)
k£l
with Rijkl = _Rijlk- It |seaSIIy seen that

Ryii; = Q(K(%ej)(ek:),@l)-

Next we will derive the first Bianchi identity. Taking the exterior derivative of
(1.2.3) and using (1.2.4), we get

1
Z Qij Nwj = 5 Z Rijklwkwle =0,
J Jk,!

which implies the first Bianchi identity
Rijri + Rikij + Rijr = 0. (1.2.6)

If thedimensionof M is2and 215 = Kwj Aws, then K isawell-defined
smooth function on M, called the Gaussian curvature of g. The curvature
equation (1.2.4) gives

dwlg = —le /\a)g.

Let M beaRiemannian n-manifold, ' alinear 2-planeof 7'M, and vy, v
isan orthonormal basisof E. Then g(K (v1, v2)(v1), v2) isindependent of the
choice of v, v9 and depends only on FE; it is called the sectional curvature
K (F) of the2-plane E with respect to g. Infact K (F) isequal to the Gaussian
curvature of the surface exp, (B) a p with induced metric from M, where B
isasmall disk centered at the originin E. The metric g is said to have constant
sectional curvature ¢ if K(E) = c for al two planes. It iseasily seen that ¢
has constant sectional curvature c if and only if

Qij = CW; /\Wj.



12 Part | Submanifold Theory

The metric g has positive sectional curvature if K(E) > 0 for all two planes
E.

The Ricci curvature,
Ric = Zﬁj w; @ Wi,

of g isdefined by the following contraction of the Riemann tensor 2:
rij =Y Rikjk-
k
The scalar curvature, i, of g isthe trace of the Ricci curvature, i.e.,
H= Z Tii-

It is easily seen that Ric is a symmetric 2-tensor. We say that Ric is positive,
negative, non-positive, or non-negativeif it has the corresponding property asa
quadratic form, e.g, Ric > 0 if Ric(X, X) > 0 for al non-zero tangent vector
X. Themetric g is called an Einstein metric, if the Ricci curvature Ric = cg
for some constant c.

The study of constant scalar curvature metrics and Einstein metrics plays
very important role in geometry, partial differential equations and physics, for
example see [Scl],[KW] and [Be].

1.2.4. Example. Supposeg = A?(z,y)dz? + B?(z,y)dy? isametric on an
open subset U of R%. Set

w) = Adx, wy = Bdy, wis=pwi+ qws.
Then using the structure equations:
dw1 = W12 N w2, d(.UQ = W1 A w12,

.. af
we can solve p and g explicitly. Let f, denote 5. We have

A B,
wlzz—gydx—i—jdy,
_ (A (B
~ AB |\ B/, A),

1.25. Example. Let M = R",and g = dz? + ... + dz? the standard
metric. A smooth vector field u of R™ can be identified as a smooth map
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u = (u1,...,u,) : R — R™. Then the constant vector fields e;(z) =
(0,...,1,...,0) with 1 at the i*" place form an orthonormal frame of TR",
and w; = dx; arethe dual coframe. Itiseasily seenthat w;; = 0 isthe solution
of the structure equations (1.2.3). So Ve; = 0, and the curvature forms are

Q=—-dwv+wAw=0.

If u = (uq,...,u,)isavector field, thenu = > u;e; and
Vu = Zdui ®e; = (duy,...,duy),

i.e., the covariant derivative of the tangent vector field « is the same as the
differential of u asamap.

Exercises.

1. Using the first Bianchi identity and the fact that R;;;; is antisymmetric

with respect to 75 and ki, show that R;;i; = R , 1.€., if we identify

T* M with T'M viathe metric, then the Riemann tensor €2 is a self-adjoint

operator on /\2 TM. (Notethat if g has positive sectional curvature then

Q) isapositive operator, but the converse is not true.)

Show that Ricci curvature tensor isasection of S%(T* M), i.e, r;; = rj;.

3. Suppose (M, g) isaRiemannian 3-manifold. Show that the Ricci curvature
Ric determines the Riemann curvature €). In fact since Ric is symmetric,
thereexistsalocal orthonormal framee , o, e3 suchthat Ric = > \jw; ®
w;. Then R;;;,; can be solved explicitly in terms of the A; from the linear
system Zkz Rikjk = )\Z(Sw

4. Let (M™,g) be a Riemannian manifold with n > 3. Suppose that for
al 2—plane E,, of TM, we have K(E,) = c¢(x), depending only on z.
Show that ¢(z) isaconstant, i.e., independent of x.

5. Let G bealLiegroup, V alinear space, and p : G — GL(V') a group
homomorphism, i.e., arepresentation. Then V' iscalled alinear G—space
and welet gv denote p(g)(v). A linear subspace V; of V' is G-invariant if
g(Vo) C Wy foral g e G.

(i) Let Vq, V5 belinear G-spacesand 1" : V; — V5 alinear equivariant
map, i.e, T'(gv) = gT'(v) foral g € G and v € V4. Show that both
Ker(T') and Im(7") are G-invariant linear subspaces.

(i) If Visalinear G-spacegivenby p thenthedual V* isalinear G-space
given by p*, where p*(g)(€)(v) = £(p(g~")(v)).

(iii) SupposeV isaninner productand p(G) C O(V). If Vj isaninvariant
linear subspace of V' then V5" is also invariant.

(iv) With the same assumption asin (iii), if weidentify V* with V' viathe
inner product then p* = p.

N
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6. Let M be a smooth (Riemannian) n-manifold, and F'(M) (Fy(M)) the

bundle of (orthonormal) frames on M, i.e., the fiber F'(M), (Fo(M).)
over x € M isthe set of al (orthonormal) bases of T'M,,.
(i) Show that F'(M ) isaprincipal GL(n)-bundle.

(ii) Show that Fy(M) isaprincipal O(n)-bundle,

(iii) Show that the vector bundle associated to the representation p = id :
GL(n) — GL(n)isTM.

(iv) Find the GL (n)-representations associated to the tensor bundles of
M, S?TM and \* TM.

Letvq,...,v, bethe standard basis of R, and

V=) wijuvi ®v; ® v @ vy |

Tijkl + Tjikl = Tijkl + Tijik = Tijki + Tikij + Tijk = 0}

Letr: V — S?(R") bedefined by r(z) = Y zikjkv: @ vj.
(i) Show that V' isan O(n)-invariant linear subspace of ®*R", and the

Riemann tensor € is a section of the vector bundle associated to V.

(ii) Show that r is an O(n)—equivariant map, V = Ker(r) & S?(R")
as O(n)-spaces, and the Ricci tensor is a section of the vector bundle
associatedto S?(R™),i.e., S*T'M. Theprojection of Riemann tensor
Q2 onto the vector bundleassociated to Ker(r) iscalled the Weyl tensor
(For detail see [Be]).

(iii) Write down the equivariant projection of V' onto Ker(r) explicitly.
(Thisgives aformulafor the Weyl tensor).

Let M = R"andg = a3(z) dz?+. ..+ a2 (x) dx?. FindtheLevi-Civita

connection 1-form of (M, g).

Let H" = {(z1,...,2,) | @, > 0}, and g = (daf + ... 4 dz2)/z2.

Show that the sectional curvature of (H™, g) is —1.

1.3. Covariant derivative of tensor fields

Let (M, g) be a Riemannian manifold, and V the Levi-Civita connection

onT M. Thereisaunique induced connection V on T* M by requiring

X(W(Y)) = (Vxw)(Y) +w(VxY). (1.3.1)

Leteq,...,e, bealoca orthonormal frame field on M, and wy,...,w, its
dual coframe. Suppose

Vei = Zwij & Gj,

Vw; = Zn-j ® wj.
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Then (131) Impllesthat Tij = —Wji = Wij, e,

Vwi = Zwij X Wj. (132)

So V can be naturally extended to any tensor bundle 7,” = " T*M ®° T M
of type (r,s) asin section 1.1.
Forr >0,5>0,letC? : 7] — 77" denote the linear map such that

Clwi, ®...Quw;, ®ej ®...Qe€;,)
:wil®...wip_1®wip+1®...wiT®ej1®...ejq_1®ejq+1®...ejs.

These linear maps C? are called contractions. If we make the standard identi-
fication of 73! with L(TM,TM), thenfort = > t;;w; ® e, we have

Ci(t) =) ti = tr(t).

SinceI™ M can be naturally identified with T'M viathe metric, the contraction
operators are defined for any tensor bundles. For exampleif ¢t = > ¢;;w; @ wj,
thenC'(t) = ) t;; definesacontraction. Theinduced connectionson thetensor
bundles commute with tensor product and contractions.

In the following we will demonstrate how to compute the covariant deriva-
tives of tensor fields. Let f be asmooth function on M, and

V=) fiw =df. (1.3.3)

Since V(df) is a section of 72, it can be written as a linear combination of
{wi ® wj}

V(df) = Z fijwj @ wi, (1.3.4)

where V. (df) = > fijw;. Using the product rule, we have

V(df) = dfi ® wi + fiVw;
= dei®wi+2fiwij  wj
i i)

= dei @ w;i + mewmi @ wj.

,m

(1.3.5)

Compare (1.3.4) and (1.3.5), we obtain

Z fijwj = dfi + Z FmWmi- (1.3.6)
J m
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Taking the exterior derivative of (1.3.3) and using (1.2.3), (1.3.6), we obtain
0= del N w; +Zfiwij N wj

- Z wawﬂ fiwji) Nw; + Zfzwzj A wj
= Zfijwj N wj,
ij

whichimpliesthat f;; = f;;. Sowehave

1.3.1. Proposition. If f: M — Risa smooth function then V2f is a
smooth section of S27T* M

The Laplacian of f is defined to be the trace of V2f, i.e.,
Af = Z Jii-
Now supposethat u = 3 u;;w; ® w; isasmooth section of @*7* M, and

Vu = E Ui Wk X w; X Wy,

where
’LL) == Z UijrWq & Wj.

Since
Vu = Z duij X w; ® Wy + uiiji & Wy + Uq Wi & ij,
and (1.3.2), we have

Z Uij Wk = duij -+ Z UimWmj + Z UmjWmsi - (137)
k m m

For example, if u isthe metric tensor g, then we have u;; = ¢,; and by (1.3.7)
we see that u;;, = 0,1.e., Vg = 0 or g isparallel.

In the following we derive the formula for the covariant derivative of the

Riemann tensor and the second Bianchi identity. Let Q = > R;jpiw; ® e; ®
wi ® w; be the Riemann tensor of g. Set

VQ = Z Rijkimwm @ wi @ €; @ wy, @ wy,
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where
Ve, St = ZRijklmwz‘ ¥e; Qwr Qwi.

Using an argument similar to the above we find

Z Rijrimwm = dR;j + Z R jkiwmi + Z Rimriwm;

(1.3.8)
+ Z Rijmlwmk + Z Rijkmwml-
Taking the exterior derivative of (1.2.4) and using (1.3.8) we have
Z Rijklmwk Aw; A wy = 0.
k,l,m
So we obtain the second Bianchi identity :
Rijkim + Rijimk + Rijmi = 0. (1.3.9)

Let u be a smooth section of tensor bundle 7.%. Then V2u is a section of
7° @T*M @ T*M. The Laplacian of u, A, isthe section of 7, defined by
contracting on the last two indices of V2u. For example, if

2
u = E Ujjw; @ wj, Vou = g wi Qwj @ w ® wy,
ijkl

then (Au)” = Zk: Ui jkk-

Exercises.

1. Let u, Ric be the scalar and Ricci curvature of g respectively, dp =
Yo prwi and VRic = ) rijpw; @ wj ® wy. Show that g, = 2) . 7iki.

2. Suppose (M, g) is an n-dimensiona Riemannian manifold, and its Ricci
curvature Ric satisfies the condition that Ric = fg for some smooth
function f on M. If n > 2, then f must be aconstant, i.e., g is Einstein.

3. Let f beasmoothfunctionon M, and V3 f = > fijrwi Qw;j @wy. Show
that

fijk = firg + meRmijk-
m
4. Let o : R— Randu : M — R be smooth functions. Show that

Ap(u) = @' () Au + "' (u)[|[Vul|?.
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6. Let (M™, g) bean orientable Riemannian manifold, f : M — Rasmooth
function, and df = ), fiw;. Show that
(i) thereisaunique linear operator * : A" T*M — A"~ " T*M such
that
wA*7 = (w, T)dv

for al p-formsw and 7, where dv is the volume form of g.
(if)
*df = Z(—l)i_lfiwl AL, Wi A Wi41 .- VAN Wnp, -

/M Afdv = /E)M «df,

In the following we assume that OM = (), show that

()
| tagi=- [ jvsia.
M M

(v) if Af = \f for some A > 0 then f isaconstant.

(iii)

1.4. Vector fieldsand differential equations

A time independent system of ordinary differential equations (ODE) for n
functions @ = (v, ..., «a,) of onereal variable ¢ is given by a smooth map
f:U — R" onanopensubset U of R". Corresponding to this ODE we have
the following “initial value problem” : Given xg € U, find a : (—tg,tg) — U
for somety > 0 such that

{o/(t) = f(af(t)), (1.4.1)

The map f isalocal vector field on R™ and the solutions of (1.4.1) are called
the integral curves of the vector field f. Asaconsegquence of the existence and
uniqueness theorem of ODE, we have

14.1. Theorem. Suppose M isa compact, smooth manifold, and X isa
smooth vector field on M. Then there exists a unique family of diffeomor phisms
vy : M — M for all ¢ € R such that

(i) po =id, s+t = ps o py,

(i) let a(t) = ¢¢(x0), then «v is the unique solution for the ODE system

{ o/ (t) = X(a(t)),
a(0) = o
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Themapt — ¢, fromtheadditive group Rtothegroup Diff (M) of thedif-
feomorphisms of M isagroup homomorphism, and is called the one-parameter
subgroup of diffeomorphisms generated by the vector field X . Conversely, any
group homomorphism p : R — Diff (M) arisesthisway, namely it isgenerated
by the vector field X', where

d

X(xg) = 7 t_O(P(t)(l“o))-

Infact, Diff (M) isaninfinite dimensional Fréchet Liegroupand C>°(T'M) is
itsLie algebra.

It follows from Theorem 1.4.1 that if X isavector field on M such that
X (p) # 0,thenthereexistsalocal coordinatesystem (U, =), = (z1,...,2Ty)

around p such that X = 3Z-. It is obvious that 32, 52-] = 0, for all i, j.

Thisisalso asufficient condition for any k vector fields being part of coordinate
vector fields, i.e.,

14.2. Theorem. Let X;,..., X bek smoothtangent vector fieldsonan n-
dimensional manifold M suchthat X1 (z), ..., Xx(z) arelinearly independent
for all z inaneighborhood U of p. Suppose [X;, X;] =0, V1 <i<j<k
onU. Thenthereexist Uy C U and a coordinate system (z, Up) around p such
that X; = ;2 forall 1 <i <k.

Thefollowing first order system of partial differential equations (PDE) for
u,

ou
8Ii N
isequivalent to 7 = du for some u, i.e., 7 isan exact 1-form, where

Pi(x1,...,20), i=1,...,n, (1.4.2)

T = ZPi(xl, Ce ,xn)dxl

So by the Poincaré Lemma, (1.4.2) is solvable if and only if 7 is closed, i.e.,
dr = 0, or equivalently

or, _op,

= f 11 2 .
2, Do or all 7#j
For the more genera first order PDE:
0
= = Py, (@), (1.4.3)

8:[7@' N
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the solvability condition is that “the mixed second order partial derivatives
are independent of the order of derivatives’. But to check this condition for a
complicated system can betedious, and the Frobeniustheorem givesasystematic
way to determine whether a system is solvable, that can be stated either in terms
of vector fields or differential forms.

1.4.3. Frobenius Theorem. Let X,..., X be k smooth tangent fields
on an n-dimensional manifold M such that X;(x), ..., Xx(x) are linearly
independent for all x in a neighborhood U of p. Suppose

k
(X0, X0 =) finXe, ¥ i, (1.4.4)
=1
on U, for somesmooth functions f; ;;. Thenthereexist anopen neighborhood Uy
of p and alocal coordinate system (i, Uy) such that the span of 22—, ..., 52

isequal tothespanof X,..., X}.

A rank k distribution £ on M is a smooth rank & subbundle of T'M. It
isintegrable if whenever X, Y € C*°(E), wehave [X,Y] € C*°(E). Given
arank k distribution, localy there exist £ smooth vector fields X1, ..., X
such that E,. isthe span of X;(x), ..., Xx(x). Thevector fields X1, ..., Xx
satisfies condition (1.4.4) if and only if E isintegrable. A submanifold N of
M iscdled an integral submanifold of E, if TN, = E, foral x € N. Then
Theorem 1.4.3. can be restated as:

1.4.4. Theorem. If E¥isasmooth, integrable, rank & distribution of M, then
there exists a local coordinate system (x, U) such that

{a €U | zr41(q) = chy1s - Tn(q) = cn}
areintegral submanifoldsfor E.

The space A of all differential formsisan anti-commutative ring under the
standard addition and the wedge product. Anideal o of A iscalled d-closed if
dp C p. Givenarank k distribution E, locally there also exist (n — k) linearly
independent 1-forms w1, . . .,w, suchthat £, = {u € TM, | wp+1(z) =
-+« = wp(z) = 0}. Using (1.1.2), Theorem 1.4.3. can be formulated in terms
of differential forms.

145. Theorem. Letwy,...,w, belinearlyindependent 1-formson M™",
and o the ideal in the ring A of differential forms generated by wy, . .., wy,.
Suppose g is d-closed. Then given x¢g € M there exists a local coordinate
system (z, U') around z( such that dzx, . . ., dz,, generates p.
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14.6. Corollary. Wth the same assumption as in Theorem 1.4.5, given
xo € M, there exists an (n-m)-dimensional submanifold N of M through x
suchthat *w; = O forall 1 < 5 <m, wherei: N — M istheinclusion.

Let wy,...,w; belinearly independent 1-formson M™, and e the ideal
generatedby wy, . . ., wg. Thenlocally wecanfind smooth 1-formswy 11, . . ., wn
such that wq, . . ., w, arelinear independent. We may assume that

dw; = Z fijiwj A wi,

i<l

for some smooth functions f;;;. Thenitiseasily seen that e is d-closed if and
only if one of the following conditions holds:

(i) fiy =0if¢ < kandj,l > k,

(i) dw; = 0 mod (w1, . ..,wy) foral i < k.

1.4.7. Example. In order to solve (1.4.3), we consider the following 1-form
onR" x R:

w=dz— ZP(ac, z)dx;.

Let o be the ideal generated by w. Then the condition that ¢ is d-closed is
equivalent to one of the following:

(i) there exists a 1-form 7 such that dw = w A 7,

(i) w A dw = 0.

If pisintegrablethenthereisasmoothfunction f(x, z) suchthat f(z, z) =

c defines integrable submanifolds of . Since df never vanishes and is propor-
tional to w, % # 0. So it follows from the Implicit Function Theorem that
locally there exists a smooth function u(z) suchthat f(z, u(x)) = ¢. Souisa
solution of (1.4.3). In particular, the first order systemfor g : U — GL(n):

dg = wg,

issolvableif and only if dw = w A w.

Exercises.

1. Let {X;, X2} bealoca frame field around p on the surface M. Show
that there exists alocal coordinate system (1, x2) around p such that X
isparallel to a%i-
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1.5. Liederivative of tensor fields

Let o : M — N be adiffeomorphism. Then the pull back ©* on vector
fields and 1-forms are defined as follows:

p*: C=(TN) — CX(TM),  o*(X), = (dpp) " (X (¢(p)),
@ OF(T*N) — C*(T"M), ©"(w)p = Wy(p) © dipp.
Hence ™ is defined for any tensor fields by requiring that
P (t1 ®@t2) = " (t1) ® " (t2),

for any two tensor fields ¢, and t.

Let X be avector field on M, and ¢, the one-parameter subgroup of M
generated by X. Thenthe Liederivative of atensor field v with respectto X is
defined to be

Lxu=—| (pju). (1.5.1)

Let 7 (M) denote the direct sum of all the tensor bundlesof M. Then Lx isa
linear operator on 7 (M ), that has the following properties (for proof see [KN]

and [Sp]):

() Ifue C>®(T](M)),then Lxu € C*(7](M)).

(i1) Lx commute with the tensor product and contractions, i.e.,
LX(u1 ® Ug) = (LXul) Ruo + U1 ® (LXUQ),

Lx(C(u)) = C(Lxu),

for any contraction operator C'.
(iii) Lx f = X f = df (X), for any smooth function f.
(iv) LxY = [X, Y], for any vector field Y.

Theinterior derivative, iy, isthe linear operator

P p—1
ix : C™ (/\T*M) — C* (/\ T*M) ,
defined by
ix(w)(Xl, cee ,Xp_l) = w(X, Xl, oo ,Xp_l).
Then on differential forms we have

Lx =i1xd+dix.
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Let (M, g) be a Riemannian manifold, e4,...,e, aloca orthonormal
frame field, and w, .. .,w, its dual coframe. Suppose X = > X;e;, and
VX =) X,je; ®wj. Using the fact that L x commutes with contractions,
we can easily show that

(wai) = Zwij (X)wj + Xijwj.
J

So we have
Lxg=Lx (Z w; ® Wi)
=D (Lxw) @wi+w; @ (Lxws), (1.5.2)
=) (Xij + Xji)wi ® wj
]
A diffeomorphism ¢ : M — M iscaled anisometry if p*g = g for al ¢, or
equivdently do,. : TM, — T M, isalinear isometry for al x € M. If ¢,

isaone-parameter subgroup of isometries of M, and X isits vector field, then
;g = g and by definition of Lxg wehave Lxg = 0. So by (1.5.2), we have

Xij + in =0.

Any vector field satisfying this condition is called a Killing vector field of M.
Conversely, if X isaKilling vector field on a complete manifold (M, g), then
the 1-parameter subgroup ¢, generated by X consists of isometries.

Exercises.

1. Find all isometries of (R", g), where g is the standard metric.

2. If ¢ isaKilling vector field and v a smooth tangent vector field on M, then
(V& v) =0.

3. Let X beasmooth Killing vector field on the closed Riemannian manifold
M. Show that

(i)
1
S AUIXP) = = Rie(X, X) + [ VX
(i)
/ Ric(VX,VX)dv :/ VX ||*dv.
M M

(iii) If Ric < 0 (i.e, Ric(X,X) < 0 for al vector field X) then the
dimension of the group of isometries of M isO.



Chapter 2
Local Geometry of Submanifolds

Given an immersed submanifold M ™ of the simply connected space form
N"™*k(c) there are three basic local invariants associated to M: the first and
second fundamental forms and the normal connection. These three invariants
are related by the Gauss, Codazzi and Ricci equations, and they determine the
isometricimmersionof M into N™**(c) uniquely uptoisometriesof N™%(c).

2.1. Local invariants of submanifolds

Let M be an n-dimensional submanifold of an (n+p)-dimensional Riemannian
manifold (IV, g), and V the Levi-Civita connection of g. Let 7'M~ denote the
orthogonal complement of 7'M, in T'N,,, and v(M ) the normal bundle of M
inN,ie,v(M), = (TM,)*. Inthis section we will derive the three basic
local invariants of submanifolds: the first and second fundamental forms, the
induced normal connection, and we will derive the equations that relate them.

Leti : M — N denotetheinclusion. Thefirst fundamental form, 7, of M
istheinduced metric¢* g, i.e., theinner product I, on T'M, istherestriction of
the inner product g, to T'M,,.

Letv € C®(v(M)) and let A, : TM,, — TM,, denote the linear
map defined by A, (u) = —((V,v)(x0))7, the projection of (V,v)(z0) onto
TM,,. Since

Vu(fv) = df (w)v + fVyv, for feC>(M,R),
and df (u)v isanormal vector, we have

Apo(u) = fA,(u).

In particular, if vy, v, aretwo normal fields on M such that vy (xg) = v2 (o),
then A, (u) = A, (u) for u € TM,,. So we have associated to each normal
vector vy € v(M),, alinear operator A,, on T'M,,, that is called the shape
operator of M inthe normal direction vy.

2.1.1. Proposition. The shape operator A,, : TM,, — TM,, is self-
adjoint, i.e., g( Ay, (u1), u2) = g(ui, Ay, (uz)).

24
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Proor. Letwvbeasmoothnormal field on M defined on aneighborhood
U of xg such that v(xg) = v, and X; smooth tangent vector field on U such
that X;(xog) = u;. Let (, ) denotetheinner product g, on T'N,.. Then

(Ap(X1), X2) = —((Vx, ()", X3) = —<(_vX1 (v)), X2)
=-X1({v, X2)) + (v,Vx,X2)
= <’U,?X1X2>.

Similarly, we have

(Ay(X2), X1) = (v, Vx, X1),

(Ap(X1), X2) — (Au(X2), X1) = (v, [X1, X2]).

Then the proposition follows from the fact that [ X7, X5] is a tangent vector
field. =

By identifying 7™ M with T'M viathe induced metric, the shape operator
A, corresponds to a smooth section of S%(T*M) ® v(M). called the second
fundamental formof M, and denoted by 71. Explicitly,

(I1(u1,u2),v) = (Ay(u1), u2).

Thethirdinvariant of M istheinduced normal connection V¥ onv (M), defined
by (V¥).(v) = (V4v)", the orthogona projection of Vv onto v(M).

Inthefollowing wewill writethe abovelocal invariantsin termsof moving
frames. A local orthonormal framefieldey, ..., e,4, IN N issaidto beadapted
to M if, whenrestricted to M, eq, ..., e, aretangent to M. From now on, we
shall agree on the following index ranges:

1<ABC<(n+p), 1<ijk<n, (n+1l)<apf,v7<(n+p).

Letwi,...,wnyp bethedua coframeon V. Then the first fundamental form
on M is

I = Z w; ® w;.
The structure equations of N are

de:ZwABAwB, wap +wpa =0, (2.1.1)

and the curvature equation is

deB:ZwAC/\wCB—GAB, (2.1.2)
C
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1
Oap = 3 Z Kapep we ANwp, Kapep = —Kappc,
C.D

wherew 4 g and © 4 g arethe L evi-Civitaconnection and the Riemann curvature
tensor of g respectively.

For a differential form 7 on IV, we still use 7 to denote i* 7, where 7
M — N istheinclusion. Restricting w,, to M, i.e., applying i* to w,,, we have

wq = 0. (2.1.3)
Using (2.1.3), and applying +* to (2.1.1), we obtain

dw; = Zwij A Wi, Wij +wj; = 0, (214>

dwo =Y wai Aw; = 0. (2.1.5)

Notethat (2.1.4) impliesthat theconnection 1-form {w; } istheLevi-Civita
connection V of the induced metric I on M. Set

Wia — Z hmjwj. (216)
J

Then (2.1.5) becomes
Z hmjwi VAN Wi = 0,
i,J
which implies that
hiaj = hjaz'-

Note that

Aea (61) = _(veiea)T = - Zwaj(ei)ej = Zhiajej'
J J

So the second fundamental form of M is

IT=)" higjwi ®w; ® €q

z’]’a

= Zwm R w; X eq.

1,
It follows from the definition of the normal connection that

V¥ (eq) = Zwag ® eg.
B
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Restricting the curvature equations (2.1.2) of N to M, we have

dwij = Zwik N Wij + Zwm N waj — Ojj, (2.1.7)
k «@
dwia = sz’k N Wia + wa N Wga — Oja, (2.1.8)
k B
dwap = Zwa'y N wyg + Zwaz’ A wig — Oag. (2.1.9)
2l i

Then (2.1.7) and (2.1.9) imply that the Riemann curvature tensor €2 of the
induced metric I and the curvature 2 of the normal connection V¥ (called the
normal curvature of M) are:

Qij = Zwm AN Wi + Gij; (2110)
«

B :Zwia/\ww+@a5, (2.1.11)

respectively. Equations (2.1.7)-(2.1.9) are called the Gauss, Codazz, and Ricci
equations of the submanifold M.
Henceforth we assume that (IV, ¢g) has constant sectional curvaturec, i.e.,

Oap = cwy N wp.

So the Gauss, Codazzi and Ricci equations (2.1.7)-(2.1.9) for the submanifold
M are

dwij =Y Wik Awkj + Y Wia A Waj — Cwi Awj, (2.1.12)
k «
dwio = Zwik N Wra + wa N WBas (2.1.13)
k B
dwap = Zwaw N wyg + Zwai A w;g. (2.1.14)
g i

And (2.1.10) and (2.1.11) become

Qij :Zwiaija+c wi/\wj, (2115)

«

8= ) Wia Awig, (2.1.16)



28 Part | Submanifold Theory

Let
Qij ==Y Rijuwr Aw,  with  Rijr + Rijue =0,

k,l

N | =

1 .
s =5 Y Riguwr Aw,  with R+ Rigy = 0.
k,l

using w;o = Zj hiajw;, We have

Rijr = Z(hiakhjal — hiathjar) + c(6ik0j1 — 0idjk), (2.1.17)

o

wBkl = Z(hiakhiﬂl — hiathigk.) (2.1.18)

(2

By identifying T M with T'M via the induced metric, then the Ricci
equation (2.1.6) becomes 2, ; = [Aq, Ap]. So we have

2.1.2. Proposition.  Suppose (NN, g) has constant sectional curvature, and
M is a submanifold of N. Then the normal curvature 2 of M measures the
commutativity of the shape operators. In fact, Q" (u,v) = [A,, Ay].

A normal vector field v isparallel if V¥v = 0. Thenorma bundle v(M)
isflat if V¥ isflat. Then it follows from Proposition 1.1.5 that v(M ) isflat if
one of the following equivalent conditions holds:

(i) The normal curvature 2" is zero.
(i) Given zy € M, there exist a neighborhood U of x(, and a parallel normal
framefieldon U.

The normal bundle (M) is called globally flat if V* is globally flat, or

equivaently, there exists aglobal parallel normal frameon M.

Since there are connections V on T'M and V¥ on v(M ), there exists a
unique connection V on the vector bundle ®2T* M ® v(M) that satisfies the
“product rule”, i.e.,

Vx(@700)=(Vx) T@0v4+0 (VxT) v+ 07 (Vxv).

Set
VII= > hiajrwi ® wj @ wg @ €a,
i,j,ka
where
VekII = Z hmjkwi & wj & Cq-

/[:?j7k?a
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Using an argument similar to that in section 1.3, we have

Z Riajrwr = dhjaj + Z PmajwWmi + Z Piomwmj + Z higjwaa-
k m m B

(2.1.19)
Taking the exterior derivative of (2.1.6), we obtain
dwm =d Z hiajwj
J (2.1.20)
= Z dhiajwj + Z hiajwjk N Wg.
J J.k

By the Codazzi equation (2.1.13), we have
dw;e = Zwij NWja + Z wip N\ Wga
J B

= Z hjakwij A\ Wk + Z hijj A Wﬁa
3.k 3, (2.1.21)

= Z Z hkajwik — Z hiﬁjwﬁa Nw;j.
J k B
Equating (2.1.19) and (2.1.20), we get

Z(dhiaj + Z{hkajwki + hiakwkj} + Z hiﬁju}ﬁa) N (.Uj =0.
j k B
So by (2.1.19), we have
Z Piajrwj A wy = 0,
3.k
i.e., hiajk = hiakj- Since hiaj = hjaiy hiajk: = hjaika so we have
2.1.3. Proposition.  Suppose (N, g) has constant sectional curvature ¢, and

M isanimmersed submanifoldof N. Then VI isasectionof S3T* M @v (M),
1€, Niajk ISSYymmetricing, j, k.

Although all our discussion above have been for embedded submanifolds,
they hold equally well for immersions. For, locally animmersion f : M — N
is an embedding, and we can naturally identify T'M, ~ T'(f(M)) ¢ (x)-
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The principal curvatures of an immersed submanifold M along a normal
vector v are the eigenvalues of the shape operator A,,. The mean curvature
vector H of M in N isthetraceof 11, i.e,

H = ZHaea, where H, = thi.
a 7

The mean curvature vector of animmersion f : M — N isthe gradient of the
areafunctional a f. To be more precise, for any immersion f : M — N, we
let dv( f*g) bethe volume element given by theinduced metric f* g, and define

A(f) = /M do(f*9).

to be the volume of theimmersion f. A compact deformation of an immersion
fo isasmooth family of immersions { f; : M — N} such that there exists a
relatively compact open set U of M with f|(M \U) = fo|(M \ U). Thenthe
deformation vector field

_Of

=

t=0

isasection of f(7'N') with compact support. It iswell-known (cf. Exercise 4
below) that
d

dt

A(fy) = —/ (H, &) dvy, (2.1.22)
t=0 M

where dvy is the volume form of f;g and H isthe mean curvature vector of
theimmersion f,. Theimmersion f iscalled aminimal, if its mean curvature
vector H = ( or equivalently

d

dt

A(ft) = 07

t=0

for all compact deformations f;. The study of minimal immersions playsavery
important role in differential geometry, for example see[Lw2], [Og], [Ch5] and
[Bb].

Exercises.

1. Let M be the graph of a smooth function v : R* — R, i.e, M =
{(z,u(z)) |z € R"}. Find I, IT and H for M inR""!,

2. Suppose a(s) = (f(s),g(s)) isasmooth curve in the yz—plane, para-
metrized by arc length. Let M be the surface of revolution generated by
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the curve o, i.e., M isthe surface of R® obtained by rotating the curve o
around the z—axis.
(i) FInd I, 11 for M.
(if) Find acurve o such that M has constant Gaussian curvature.
(iii) Find acurve o such that M has constant mean curvature.
3. Lety:[0,¢] — R™ beanimmersion parametrized by arc length.
(i) f n = 2, then I = ds? and I = k(s)ds?, where k(s) is the
curvature of the plane curve.
(if) For generic immersions, show that we can choose an orthonormal
framefield e4 on~ such that

0, if |[A— B| #1;
wAB = {ki(s)ds, if (A,B) = (i,i+1);
—ki(s)ds, if (AB) = (i+1,1),
i.e., (wap) is anti-symmetric and tridiagonal. (When n = 3, this
frame e4 is the Frenet frame for curves in R® and k&, ko are the
curvature and torsion of ~ respectively, for more on the theory of
curves see [Ch4], [Da]).
4. Let A denote the area functional for immersions of M into N.
(i) If ¢ : M — M isadiffeomorphism, then A(f o ¢) = A(f),i.e, A
isinvariant under the group of diffeomorphisms of M.
(ii) Show that VA(f) hasto beanormal field along f.
(iii) It suffices to show (2.1.22) for normal deformations, i.e., we may
assume that £ isanormal field for the immersion f.
(iv) Prove (2.1.22) for normal deformations.

5. Let M be an immersed submanifold of R™, p € M, v € TM, and
v € v(M), unit vectors. Let E be the plane spanned by «, v, and o the
curve given by the intersection of M and p + E. Show that (11 (u,u),v)
is equal to the curvature the curve o at p.

6. Let M™ be animmersed submanifold of N"+%(c).

(i) If weidentify T M with T'M viathe metric then

Ric=HA — A% + (n—1)cl,

p=H?*—|II|* +cn(n —1).

(i) If M isminimal in R"™* then Ric(M) < 0.
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2.2. Totally umbilic submanifolds

A submanifold M of N is caled totally geodesic (t.g.) if its second
fundamental form is identically zero. A smooth curve o of N is caled a
geodesic if as a submanifold of IV it istotally geodesic. It is easily seen that
if e isan adapted frame for M then M ist.g. if and only if w;, = 0O for all
1<i<nadn+1<a<n+np.

2.2.1. Proposition. Let v be a smooth curve on N. Then the following
statements are equivalent:

() v isageodesic,

(ii) the tangent vector field +' is parallel along ~ ,

(iii) the mean curvature of v as a submanifold of V is zero.

PRrROOF. We may assumethat v(s) is parametrized by its arc length and
e1(v(s)) = 4/(s). Then v is ageodesic if and only if wy;(7") = 0 for al
1 < i <n, (ii) isequivaent to

and (iii) gives

H = Zwli('y’)ei =0.

So these three statements are equivalent. =

2.2.2. Proposition. A submanifold M of a Riemannian manifold N istotally
geodesicif and only if every geodesic of M (with respect to the induced metric)
isa geodesic of V.

ProOF. The proposition follows from V, o/ = V! — (V')

and (Vo) =11(d,a). »

A Riemannian manifold with constant sectional curvatureiscalled aspace
form. We have seen in Example 1.2.5 that R™ with the standard metric has
constant sectional curvature 0. In the following we will describe complete
simply connected space forms with nonzero curvature.

Let g = da? + ...+ dz2,, bethe standard metric on R"**, and V the
Levi-Civita connection of g. Then we have seen in Example 1.2.5 that

V(u) = du,



2. Local Geometry of Submanifolds 33

if weidentify C'°°(TR™**) with the space of smooth mapsfrom R"** to R +*,
Let M be a submanifold of (R"**,g), and X : M — R™"* the inclusion
map. Let ey and wy be asin section 2.1. First note that the differential
dX, : TM, — TN, of themap X a p € M istheinclusion ¢ of T'M,
in TN,. Under the natural isomorphism L(TM,TN) ~ T*M ® TN, i
correspondsto . w;(p) ® e;(p). Hence we have

dX =) wi Qe (2.2.1)

2.2.3. Example. Let S* denote the unit sphere of R™*1. Note that the
inclusionmap X : S* — R""! isalsothe outward unit normal fieldon S*, i.e.,
we may choose e, +1 = X. The exterior derivative of e,, 11 gives

dep11 = E Wnt1,i Q €.

Using (2.2.1), we have
Win+1 = —Wj,

So it follows from the Gauss equation (2.1.15) that S™ has constant sectional
curvature 1. Thisinduced metric of S™ is called the standard metric.

2.2.4. Example. Let R™! denote the Lorentz space (N, g),i.e, N = R"*!
and g is the non-degenerate metric dai + ... + da2 — da?; of index 1. So
TN isan O(n, 1)— bundle, and results similar to those of section 1.1 and 2.1
can be derived. Let V denote the unique connection 7'V, that is torsion free
and compatible with g. Let

M ={z e R" | g(x,2) = —1},

and X : M — R™! denote the inclusion map. Then the induced metric on M
is positive definite, and X isaunit normal field on M, i.e., g(x,v) = 0, for dll
veETM,. Lete,,1 = X andey,...,e,q 1 aloca framefield on R™! such
that

g(ei,ej) = €;0;5, where e =... =€, = —€p41 = 1.

Soey(x),...,e,(x)aretangentto M forx € M. Letw?, ..., w™ ! bethedual
coframe, i.e., wA(ep) = dap. Let w% bethe connection 1-form corresponding
toV,i.e,

Ves =dey = wa Rep.
B

By (1.1.6), we have
eaw® +whep =0, and

?wA:—ng‘@wB.
B
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Set

Sow! ., = w;. By the Gauss equation we have

J — n+1 j n+1 n+1
Q = —w" Nwypyg = —w T AW

= —wAw = —w; AN,

So M has constant sectional curvature —1. From now onwewill let H™ denote
M withtheinduced metric from R™!. H™ isalso called the hyperbolic n-space.

Itiswell-known ([KN]) that every simply connected spaceform of sectional
curvature c isisometricto R, S*, H" if ¢ = 0, 1, or —1 respectively. We will
let N™(c) denote these complete, simply connected Riemannian n-manifold
with constant sectional curvature c.

2.2.5. Definition. An immersed hypersurface M™ of the smply connected
space form N™*1(c) is caled totally umbilic if I1(z) = f(x)I(x) for some
smooth function f : M — R.

In the following we will give examples of totally umbilic hypersurface of
space forms.

2.2.6. Example. Anaffinen-plane E of R"* istotally geodesic. For we can
choose ¢, to be a constant orthonormal normal frame on E. Then de,, = 0.
So we have II = 0. Let S"(zo,r) be the sphere of radius r centered at
zo in R Then e, 1(x) = (x — x0)/r is a unit normal vector field on
S*(xo,7), ad den11 = (1/r) Y, wi ® e;. Sowe havew; 41 = —(1/r)w;
andII = —(1/r)I,i.e, S"(xo,r) istotally umbilic, and has constant sectional
curvature .

2.2.7. Example. Let V be an affine hyperplane of R"*2, v, a unit normal
vector of V, cos @ the distance from theoriginto V, and M = S**1 N V. Then
ent1 = —cot O X + csc vg isaunit normal fieldto M in S**1, Taking the
exterior derivative of e,, 1, we obtain

den+1 = —cot @ dX = —CotQZwi ® e;,
i€, wini1 = cotOw; and IT = cotf 1. So M is totally umbilic in S**!

with sectional curvature equal to 1 4 cot? § = csc? 6, and M ist.g. in S*T1,
if cos@ = 0 (or equivalently V isalinear hyperplane).
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2.2.8. Example. Let v be a non-zero vector of the Lorentz space R" ™11,
and
M ={x ¢

(x,z) = —1, (x,v9) = a}.
Then
= <dX,X> = Z(GZ‘,X>¢UZ',
0= (dX,v) = Z(ei,v(})wl

So (X, e;) = (vg,e;) = 0, which implies that

vg = —aX + bep1, (2.2.2)
for some b. Note that

(v, v) = —a® + b2
Taking the differential of (2.2.2), wehave ) . (aw; + bw; n11)e; = 0. SO

aw; + bwi,nﬂ = 0. (223)

(i) If {(vg,v9) = 1, then —a? + b?> = 1 and we may assume that a =

sinh to and b = cosh to.- So (223) |mpI|eSthaI Wint+l = — tanh to Wi,
i.e, I[I = —tanh ty I, i.e., M istotaly umbilic with sectiona curvature

—1 + tanh?tq = — sech? t.

(II) If <’Uo,’UQ> = 0, then —a? + b2 = 0, Win+1 = Wi. Soll =1,and M is
totally umbilic with sectional curvature 0.

(iii) If (vg,vo) = —1, then —a? + b?> = —1 and we may assume that a =
coshtg, b = sinhty. Then we have w; ,,+1 = — cothty, which implies that
11 = —cothtyl,i.e, M istotaly umbilic with sectional curvature — csch? t.

2.2.9. Proposition.  Suppose X : M™ — R"™! isan immersed, totally
umbilic connected hypersurface, and n > 1. Then

(i) I1 = c I for some constant ¢

(ii) X (M) iseither contained in a hyperplane, or is contained in a standard
hypersphere of R* 1,

PROOF. Letey,w; andwyp asbefore. By assumption we have
Wia = f(T)w;. (2.2.4)

Taking the exterior derivative of (2.2.4), and using (2.1.4) and (2.1.13), we
obtain

dwm :df/\wl—i—wa” /\(.Uj
J

—ijwj/\werwa” A wj
—wa A Wja —waZ] Awj.
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So >, fijwj A w; = 0, which implies that f; = 0 for al j # i. Since
n>1, df =0,i.e, f = caconstant.
If c=0,thenw;, = 0. Sode, = 0, e, iSaconstant vector vy, and

d(X,vg) = Z(ei,v@wi =0,

1

i.e.,, X (M) iscontained in ahyperplane. If ¢ # 0, then w;, = cw; and
€a 1
d (X + ?> = ; (wiei — Ewm> e; = 0.

So X + e, /cisequal to a constant vector z, € R™"!, which implies that
IX — 2ol = (1/c)?.

The concept of totally umbilic was generalized to submanifoldsin [NR] as
follows:

2.2.10. Definition. Animmersed submanifold M™ of the smply connected
space form N"*%(c) is called totally umbilic if 17 = &1, where ¢ isaparallel
normal field on M.

2.2.11. Proposition.  Let X : M™ — R"** be a connected, immersed
totally umbilic submanifold, i.e.,, 11 = &1, where isa parallel normal field on
M. Then either

(i) ¢ = 0 and M is contained in an affine n-plane of R"**, or

(il) X + (&¢/a) isaconstant vector xo, wherea = ||¢||; and M is contained
in a standard n—sphere of R" 1%,

Proor. If ¢ =0, thenw;, = 0foral i, «. TheRicci equation (2.1.14)
gives dwag = wa~y A\ wyg, Which implies that the normal connection isflat. It
follows from Proposition 1.1.5 that there exists a parallel orthonormal normal
frame e},. So we may assume that e,, are paralel, i.e., w,z = 0. Thisimplies
that de, = 0, i.e., the e, are constant vectors. Then

d(X,eq) = (dX,eq) =0,
so the (X e, ) are constant ¢, and M is contained in the n—plane defined by
(X, eq) = Cq.
If £ # 0, thena = ||£]| isaconstant, and we may assumethat £ = ae;, 41,

VYen+1 =0,

Wint+1l = aAWi, Wi = 07 Wntl,a = Oa (225)



2. Local Geometry of Submanifolds 37

foral a > (n+1). Then

€n+1 1
d<X )ZE i — —Win i =0,
+ a <w aw7+1>e

i

s0 X + (e,41/a) isaconstant vector zy. Using (2.2.5), we have

d(el/\.../\en+1)= Z 61/\...wia€a/\€i+1.../\€n+1

i,a>n—+1
+ Z e1N...Nep Nwpi1,a€a = 0.
a>n+1
Hence the span of e1 (), ..., e,+1(x) isafixed (n + 1)—dimensiona linear

subspace V of R"™* foral 2 € M. But X = 2o — e, 4+1/a, S0 M iscontained
in the intersection of the affine (n + 1)—plane xo + V' and the hypersphere of
R™"* of center o and radius1/a. m

Exercises.

1. Prove the analogue of Proposition 2.2.9 for totally umbilic hypersurfaces
of "t and H™ 1,

2. Provethe analogue of Proposition 2.2.11 for totally umbilic submanifolds
of "t and H* 1,

2.3. Fundamental theorem for submanifolds of space forms

Given asubmanifold M™ of acomplete, smply connected space form, we
have associated to M an orthogona bundle (the normal bundle v(M)) with a
compatible connection, and also the first and second fundamental forms of M.
Together these satisfy the Gauss, Codazzi and Ricci equations. Inthefollowing,
we will show that these data determine the submanifold up to isometries of of
the space form.

2.3.1. Theorem. Suppose(M™,g) isa Riemannian manifold, £ isasmooth
rank k£ orthogonal vector bundle over M with a compatible connection V!,
and A : £ — S?T*M is a vector bundle morphism. Let e;,...,e, bea
local orthonormal frame field on 7'M, wy, ..., w,, its dual coframe, and w;;
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the corresponding Levi-Civita connection 1-form, i.e., w;; is determined by the
structure equations

dw; = Zwij VAN Wi, Wij + Wji = 0. (231)
J

Let epy1,. .., enqk bean orthonormal local frame field of &, and w, s is the
o(k)—valued 1-formcorrespondsto V*. Let w;, bethe 1-forms determined by
the vector bundle morphism A:

Aleq) = Zwm ® w;.

St wei = —wia, and suppose w4 p satisfy the Gauss, Codazzi and Ricci
equations:
dwij = Zwik AN WEkj + Zwm A Wag s (232)
k o
dwie, = Zwik N Wi + Z wig N\ Waa, (2.3.3)
k B
dweg = Za)a,y N Wy + Zwai N wig. (2.3.4)
¥ 7
Then given o € M, po € R***, and an orthonormal basis vy, .. ., v,4 Of

R"**  for small enough connected neighborhoodsU of z in M thereisaunique
immersion f : U — R™* and vector bundle isomorphism# : € — v(M)
such that f(xg) = po and vy, ..., v, aretangent to f(U) at po, g isthe first
fundamental form, A(n(e,,)) arethe shape operators of theimmersion, and V1
corresponds to the induced normal connection under the isomor phism 1.

PRrROOF. It follows from the definition of wap that w = (wap) isan
o(n 4+ k)—vaued 1-form on M. Then (2.3.2)-(2.3.4) imply that w satisfies
Maurer-Cartan equation:
dw =w N w,

which isthe integrability condition for the first order system
do = wep.

So there exist a small neighborhood U of zq in M and mapse, : U — Rtk
such that

dey = E waB ®ep,
B
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where e 4(z¢) = v4 and {es(x)} isorthonormal for all x € U. To solve the
system
dX = Zwi X €;,

we prove the right hand side isa closed 1-form as follows:

d (Zwi®ei> = Zdwi®ei —wi/\ZwiA@)eA
7 7 A
= Z(dwl — Zwij /\Wj) X e; — Z(Wz /\Wia) X €aq,
i J

1,J,0
= Z(dwi - sz’j ANwj) ® e; — Z hiajwi Nw; ® eq,
7 ,] i,j,(l
(2.3.5)

the structure equations (2.3.1) impliesthefirst termof (2.3.5) iszeroand h;; =
hjqi impliesthe second term iszero. =

2.3.2. Corollary. Let g : (M,g9) — R"™* and ¢ : (M, g) — R"™* be
immersions. Suppose that they have the same first, second fundamental forms
and the normal connections. Then there is a unique orthogonal transformation
B and a vector vy € R™ ™ such that () = B(p1(x)) + vo.

The group G,,, of isometries of R is the semi-direct product of the or-
thogonal group O(m) and the translation group R™; ¢T,,g~ ! = Ty(,, Where
g € O(m) and T,, isthe trandation defined by v. SoitsLieagebrag,,, can be
identified asthe Lie subalgebraof gl(m + 1) consisting of matrices of theform

A w
0 0)°
where A € o(m), and v isanm x 1 matrix.

Let M, w;,wap beasin Theorm 2.3.1. Let 7 denote the following gl(n +
k + 1)—valued 1-form on M:
(= 0
N0 0/’

wherew = (wap)isano(n+k)—vaued 1-form,andf isan (n+k) x 1-vaued
1-form (wy,...,wn,0,...,0)%

Then T isa§,,;,—Vvalued 1-form on M. The Gauss, Codazzi and Ricci
equations are equivalent to the Maurer-Cartan equations

dr =1 NT.
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Hencethereexistsauniquemap F' : U — GL(n+k+ 1) suchthat dF' = 7F,
the m®" row of F(x¢) is (v, 0) form < (n+ k), andthe (n + k + 1)t row
of F(xo) is(po,1). Thenthe (n + k + 1)5* row is of the form (X, 1),and X
isthe immersion of M into R"**.

A similar argument will give the fundamental theorem for submanifolds of
the sphereand the hyperbolic space. For S***, wehave F : U — O(n+k+1),
andthe (n+ k4 1)*! row of F givestheimmersionof M into S*™*. For H"**,
wehave F : U — O(n + k,1), and the (n + k + 1) row of F' gives the
immersion of M into H" ¥,

2.3.3. Theorem. Given (M, g),&, VY, A w;,wap asin Theorem2.3.1. Let
c denote theinteger 0,1 or —1. Set

(w0
Te=\ —cot 0)°

where w = (wap) isan o(n + k) valued 1-form, and 6 isthe (n + k) x 1
valued 1-form (w1, ..., wy,0,...,0)" on M. Then

(i) e isaGpik,0(n + k + 1), or o(n + k,1)—valued 1-form on M for
c=0,1o0r —1 respectively.

(i) If 7. satisfies the Maurer-Cartan equations

dTe = Te N\ Te,

then
(1) the system
dF = 1.F (2.3.6)

for the GL(n + k + 1)—valued map F' is solvable,

(2) if F isa solution for (2.3.6) and X denotes the (n + k + 1)* row,
then X : M — N"+F(c) isan isometric immersion such that g, £, V1, A are
the first fundamental form, normal bundle, induced normal connection, and the
shape operators respectively for theimmersion X.

(3) The data g¢,&, VY, A determine the isometric immersions of M into
N™*k(¢) uniquely up to isometries of N"%(c).

Exercises.

1. Show that the group of isometries of (S", g) isO(n + 1), where g isthe
standard metric of S”.

2. Show that the group of isometries of the hyperbolic space (H", g) is
O(n, 1).
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3. Prove Theorem 2.3.3for S*** and H" %,

4. Show that then — 1 smooth functions k1 (s), . . ., k,—1(s) obtained in Ex.
3 of section 2.1 determine the curve uniquely up to rigid motions (thisis
the classical fundamental theorem for curvesin R™).



Chapter 3

Weingarten Surfaces in three dimensional space forms

In this chapter we will consider smooth, oriented surfaces M in three-
dimensional simply-connected space forms N3(c). Such an M is called a
Weingarten surface if its two principal curvatures \;, Ao satisfy a non-trivial
functional relation, e.g., surfaceswith constant mean curvature or constant Gaus-
sian curvature. We will use the Gauss and Codazzi equations for surfaces to
derive some basic properties of Weingarten surfaces.

Let X : M — N3(c) be animmersed surface. Using the same notation
asin section 2.1, we have

dX =w) ®e; +wy ® e,
dw1 = W12 VAN w2, d(.UQ = w1 VAN w12, (302)
and the Gauss equation (2.1.12), Codazzi equations (2.1.13) become:
dwis = —Kwj ANwg = —wi3 A weg = —()\1)\2 + c)w1 N wa, (303)
dwiz = w12 N weg, dwez = w1z A wia.
The mean curvature and the Gaussian curvature are given by
H=XM+X, K=cH+ M.

A point p € M is called an umbilic point if 11, = AI,, i.e, the two
principal curvaturesat p are equal. The eigendirections of the shape operator of
M at anon-umbilic point are called the principal directions. Local coordinates
(x,y) on M are called line of curvature coordinates if the vector fields a% and
8@ are principal directions. If p € M isnot an umbilic point then there is a
neighborhood U of p consisting of only non-umbilic points, and the frame field
given by the unit eigenvectors of the shape operator is smooth and orthonormal.
So it follows form Ex. 1 of section 1.4 that there exist line of curvature coordi-
nates near p. A tangent vector v € T'M,, is called asymptotic if 11(v,v) = 0,
and acoordinate system (z, y) is called asymptoticif ;& and a% are asymptotic.

A local coordinate system on a Riemannian surface is called isothermal
if the metric tensor is of the form f?(dx? + dy?). It is well-known that on
a Riemannian 2-manifold there always exists isothermal coordinates locally
([Ch2)). If (x,y) and (u, v) aretwo isothermal coordinate systemson M, then
the coordinate change from z = x + iy to w = u + v iSacomplex analytic
function. Hence every two dimensional Riemannian manifold has a natural
complex structure given by the metric.

42
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3.1. Constant mean curvature surfacesin N3(c)

In this section we derive aspecial coordinate system for surfacesof N?3(c)
with constant mean curvature, and obtain some immediate consequences.

3.1.1. Theorem. Let M be animmersed surface in N3(c) with constant
mean curvature H. Suppose pg € M isnot an umbilic point. Then thereisa
local coordinate system (u, v) defined on a neighborhood U of p, which isboth
isothermal and a line of curvature coordinate systemfor M. Infact, if Ay > A
denote the two principal curvaturesof M thenon U the two fundamental forms
are.

2
I = —"——(du®+ dv?),
(/\1_@( )

2

= (A1 — /\2)(

)\1dU2 —+ )\2d’U2).

Proor. We will prove this theorem for H = 0, and the proof for H
being a non-zero constant is similar. We may assume that (x, y) is a line of
curvature coordinate system for M near py, i.e.,

w1 = A(xa y)dxa W2 = B(Jj? y)dy7
w1z = Awy = AAdr, wez = —Aws = —ABdy, (3.1.1)

where X and —\ are the principal curvatures. We may also assumethat A > 0.
By Example 1.2.4 we have

—A B,
wig = Tydaz + Zdy. (3.1.2)

Substituting (3.1.1) and (3.1.2) to the Codazzi equations (3.0.4) we obtain
AA+20\A, =0, AB+2\B, =0.

Thisimplies that

(AVX), =0, (BVA),=0.

So Av/)X isafunction a(z) of = alone, and Bv/) isafunction b(y) of y aone.
Let (u,v) bethe coordinate system defined by

du = a(x)dx, dv = b(y)dy.
Then we have

1
I = A%dz® + B?dy? = X(du2 + dv?),
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IT = \(A?%dx? — B*dy?) = du® — dv®. »

3.1.2. Proposition.  Let U be an open subset of R? with metric ds? =
f?(dx?® + dy?),and v : U — R asmooth function. Then
(i) with respect to the dual frame w; = fdx and ws = fdy, we have

wia = —(log f),dz + (log f).dy. (3.1.3)

(i) if u : U — Risasmooth function then

Ay = Ltuw (3.1.4)
f
where A isthe Laplacian with respect to ds?,
(iii) the Gaussian curvature K of ds? is
log f)zz + (log f
K =—-A(log f) = ! ) f2( )yy‘ (3.1.5)
Proor. (i) followsfrom Example 1.2.4. To see (ii), note that
du = uzdx + uydy = uiwy + uswo,
S0
up =ugz/f, us =uy/f.
Set V2u = Z U Wi @ wy, then by (1.3.6)
dui + uswo1 = Zuliwi, (316)
dUQ + Uiwie = ZUZ]:W/I:. (317)

(2

Comparing coefficients of dx in (3.1.6) and dy in (3.1.7), we obtain

un f = (ue/f)z + (uyfy/f2)7

U22f = (uy/f)y - (uxfa:/fz)a
which implies that

(Au)f = fi1+ fa2 = (Uaa + uyy) /.
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Since dwias = —Kwy A wo, (iii) follows.  »

Asaconseguence of the Gauss equation (3.0.3), Theorem 3.1.1 and Propo-
sition 3.1.2 we have

3.1.3. Theorem. Let M be an immersed surface in N3(c) with constant
mean curvature H. Let K bethe Gaussian curvature, and A the Laplacian with
respect to the induced metric on M. Then K satisfies the following equation:

A log(H? — 4K + 4c) = 4K.

3.1.4. Theorem. If M isanimmersed surface of N3(c) with constant mean
curvature H, then the traceless part of the second fundamental formof M, i.e,,
11 — %I, is the real part of a holomorphic quadratic differential. In fact, if
z = x1 +1xo isanisothermal coordinateon M and 11 — %I =Y bijjdr,dz;.
Then

(i) « = by1 — 1b1o iSanalytic,

(i) 11 — L1 = Re(a(z)dz?).

Proor. We may assume that wy, = fdx,, wo = fdxs, and w;z =
> hijw;. Then we have

wiz = —(log f)ydx + (log f).dy,

H
by = —boy = (h11 — —) f?,

2
bio = h12f2-
Using (1.3.7), and thefact that h11 — hoo = 2h17 — H, the covariant derivative
of I1 isgiven asfollows:

dhi1 + 2hiawoy = Z hi1pwk, (318)

dh12 + (2h11 — H)QJ12 = Z hlgkwk. (319)
Equating the coefficient of dx in (3.1.8) and the coefficient of dy in (3.1.9), we
obtain F
(h11)s + 2h127y = hin f,

(h12)y + (2h11 — H)% = hy22f.
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Since H isconstant and V commuteswith contractions, wehave i1 + haop =
0. Thus hy111 = —ha21, Whichisequal to —h122 by Proposition 2.1.3. So

(hll):c + 2h12% — _(h12)y — (2h11 — H)f?

It then follows from a direct computation that

(b11)s = (h11)of? +2f fo(hi1 — H/2)
= —(h12)y f? = 2h12f fy = —(b12) -

Similarly, by equating the coefficient of dy in (3.1.8) and the coefficient of dx
in (3.1.9), we can prove that

(b11)y = (b12)a-
These are Cauchy-Riemann equations for o, so o isan analytic function. =

Since the only holomorphic differential on S* iszero ([Ho]), 11 — Z£1 =0
for any immersed sphere in N3(c) with constant mean curvature H, i.e., they
are totally umbilic. Hence we have

3.15. Corollary ([Ho]). If S? isimmersed in R® with non-zero constant
mean curvature H, then S? is a standard sphere embedded in R?.

3.1.6. Corollary ([Al],[Cb]). If S? isminimallyimmersed in S*, then S? is
an equator (i.e., totally geodesic)

3.1.7. Corollary. If S? isimmersed in S® with non-zero constant mean
curvature H, then S? is a standard sphere, which is the intersection of S* and
an affine hyperplane of R?.

Next we discuss theimmersions of closed surfaces with genus greater than
zero in N3(c). Given aminima surface M in N3(c), we have associated to
it a holomorphic quadratic differential ), and locally we can find isothermal
coordinate system (x, y) such that Q = «(z)dz? for some analytic function
a = b11 — iblg, and

I = e*“(d2? + dy?), II = Re(a(z)dz?). (3.1.10)

Then
Wiz = —Uydx + ugydy,
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2u 2u
bi1 = hiie y bia = hige”".

So
det(hij) = —(bYy +bip)e™™ = —e* |af?,

and the Gaussian curvature is

K = det(hij) + c. (3111)
The Gauss equation (3.0.3) gives
Upy + Uyy = €2 |a]® — ce®™, (3.1.12)

and the Codazzi equations are exactly the Cauchy Riemann equations for . It
follows from the Fundamental Theorem 2.3.3 for surfaces in N3(c), that the
following propositions are valid.

3.1.8. Proposition. Let U be an open subset of the complex plane C, «
an analytic function on U, and « a smooth function, which satisfies equation
(3.1.12). Then there is a minimal immersion defined on an open subset of U
such that its two fundamental forms are given by (3.1.10).

3.1.9. Proposition ([Lw1]).  Suppose X : M2 — N3(c) is a minimal
immersion with fundamental forms 7, 11, and () isthe associated holomor phic
guadratic differential. Then thereisa family of minimal immersions Xy whose
fundamental forms are:

Iy =1, Iy = Re(e“Q),
where 0 is a constant.

Let M be aclosed complex surface (i.e., a Riemann surface) of genus g.
Then it iswell-known that thereis ametric ds? on M, whose induced complex
structureisthe given one, and that has constant Gaussian curvature 1, 0, or —1,
forg=0,g =1,0r g > 1 respectively.

Now we assume that (M, ds?) is a closed surface of genus g > 1 with
constant Gaussian curvature k, and Q isaholomorphic quadratic differential on
M. Suppose z is alocal isothermal coordinate system for M, ds? = f2|dz|?
and Q = «a(z)dz%. Then ||Q||? = |a|?f~* is awell-defined smooth function
on M (i.e., independent of the choice of z), and

k=—-A logf, (3.1.13)

where A isthe Laplacian of ds?. If M can be minimally immersed in S* such
that the induced metric is conformal to ds?, and Q is the quadratic differential
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associated to the immersion, then there exists a smooth function ¢ on M such
that the induced metric is

I = e%%ds® = f2e??(da? + dy?),

and
K=—e*)Q|*+c

So the conformal equation (1.3.11) implies that (o satisfies the following equa-
tion:
1+ Ap = —e* +|Q|%e 2%, (3.1.14)

forg > 1, 0r
Ap = —e* +||Q||%e 2%, (3.1.15)

for g = 1, where A isthe Laplacian for the metric ds?. These equations are
the same as the Gauss equation.

If g = 1, then M is atorus, so we may assumethat M ~ R?/A, where
A istheinteger lattice generated by (1,0), and (r cos 0, rsin 6), ds? = |dz|?,
and ||Q||? isaconstant a. Then equation (3.1.15) become

Ap = —€e*? + ae 2%, (3.1.16)
Letb = {loga, andu = ¢ — b. Then (3.1.16) becomes
Au = —2+/a sinh(2u).

So one natural question that arises from thisdiscussion is: For what values of r
and @ is there a doubly periodic smooth solution for

Upg + Uyy = @ sinhu, (3.1.17)
with periods (1, 0), and (r cos 0, 7 sin )?

If g > 1, then there are two open problems that arise naturally from the
above discussion:

(i) Fix one complex structure on a closed surface M with genusg > 1, and
determine the set of quadratic differentials () on M such that (3.1.14) admits
smooth solutionson M.

(if) Fix a smooth closed surface M with genus ¢ > 1 and determine the
possible complex structures on M such that the set in (i) is not empty.

However the understanding of the equation (3.1.14) on closed surfacesis
only a small step toward the classification of closed minimal surfaces of S°,
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because a solution of these equations on a closed surface need not give a closed
minimal surface of S. In the following we will discuss where the difficulties
lie. Suppose v isadoubly periodic solution for (3.1.17), i.e., u isasolution on
atorus. Then the coefficients 7 of the first order system of partial differential
equations

dF =TF, (3.1.18)

asin the fundamental theorem 2.2.5 for surfacesin S?, are doubly periodic. But
the solution F' need not to be doubly periodic, i.e., such v need not give an
immersed minimal torus of S*. For example, if we assume that « depends only
on x, then (3.1.17) reducesto an ordinary differential equation, v” = a sinh u,
which always has periodic solution. But it was proved by Hsiang and Lawson
in [HL] that there are only countably many immersed minimal tori in %, that
admit an S'-action. If the closed surface M has genus greater than one, then
for agiven solution v of (3.1.14), thelocal solution of the corresponding system
(3.1.18) may not close up to a solution on M (the period problem is more
complicated than for the torus case).

Let (M, ds?) be a closed surface with constant curvature k, and d3? =
e2?ds?. Suppose (M, ds?) isisometrically immersed in N3(c) with constant
mean curvature H, and (Q is the associated holomorphic quadratic differential.
Then we have

e )QI1? = —det(hiy) + H? /4,

and ¢ satisfies the conformal equation (1.3.11):
—k+ Ao =|Q|%e ™ — (H?/4 + c)e*?, (3.1.19)

where A\ isthe Laplacian for ds?. Moreover (3.1.19) is the Gauss equation for
theimmersion. Notethat if X : M — R® isanimmersion with mean curvature
H # 0 and a is a non-zero constant, then a X is an immersion with mean
curvature H /a and the induced metric on M viaa X isconformal to that of X.
So for the study of constant mean curvature surfaces of R®, we may assume that
H = 2. Then (3.1.19) is the same as the above equations for minimal surfaces
of S*. It isknown that the only embedded closed surface (no assumption on the
genus) with constant mean curvaturein R? isthe standard sphere (for aproof see
[Ho]), and Hopf conjectured that there is no immersed closed surface of genus
bigger than 0 in R® with non-zero constant mean curvature. Recently Wente
found counter examplesfor this conjecture, he constructed many immersed tori
of R® with constant mean curvature ([We]).

Exercises.

1. Suppose (M, g) is a Riemannian surface, and (z,y), (u,v) are loca
isothermal coordinates for g defined on Uy and U, respectively. Then
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the coordinate changefromz = z +iytow = u+wonU; N Uy isa
complex analytic function.

3.2. Surfacesof R? with constant Gaussian curvature

In the classical surface theory, a congruence of linesis an immersion f :
U — Gr, where U is an open subset of R? and G is the Grassman manifold
of dl linesin R® (which need not pass through the origin). We may assume
that f(u,v) is the line passes through p(u,v) and paralel to the unit vector
¢(u,v) inR3. Lett(u,v) beasmooth function. Then anecessary and sufficient
condition for
X(u,v) = p(u,v) + t(u,v)&(u, v)

to be an immersed surface of R® such that &(u, v) is tangent to the surface at
X (u,v)is
det (&, Xy, Xy) = 0.

This gives the following quadratic equation in t:

det(fa Dy +1 guv Dy +1 fv) =0,

which generically has two distinct roots. So given a congruence of lines there
exist two surfaces M and M* such that the lines of the congruence are the
common tangent lines of M and M*. They are called focal surfaces of the
congruence. There results amapping ¢ : M — M™* such that the congruence
isgiven by thelinejoining P € M to ¢(P) € M*. Thissimple construction
plays an important role in the theory of surface transformations.

We rephrase this in more current terminology:

3.2.1. Definition. A line congruence between two surfaces M and M * in R?
isadiffeomorphism? : M — M™* suchthat for each P € M, thelinejoining P
and P* = /(P) isacommon tangent linefor M and M *. Theline congruence
¢ is called pseudo-spherical (p.s.), or a Backlund transformation, if

(i) ||PP*|| = r, aconstant independent of P.

(if) The angle between the normasvp and vp- a P and P* isa constant 6
independent of P.

The following theorems were proved over a hundred years ago:

3.2.2. Backlund Theorem. Suppose? : M — M™ isap.s. congruence
in R® with distance r and angle # # 0. Then both M and M* have constant

. . c 2
negative Gaussian curvature equal to — 2.2

r2



3. Weingarten Surfacesin three dimensional space forms 51

Proor. There exists aloca orthonormal frame field eq, es, e3 on M
such that PP* = rey, and eg isnormal to M. Let

*
61 = —€1,
e; = cosf ey +sinfes, (3.2.1)
es = —sinf ey + cosfes.

Then {e}, €5} isan orthonormal framefield for 7A7*. If locally M isgiven by
theimmersion X : U — R?, then M* is given by

X*=X+r e. (3.2.2)
Taking the exterior derivative of (3.2.2), we get

dX* =dX + rde;
= wie1 + woeg + r(wiges + wizes) (3.2.3)

= wier + (wa + rwig)es + rwizes.
On the other hand, letting wi, w5 be the dual coframe of e7, e5, we have

dX™ = wie] +wsye;, using(3.2.1)

3.2.4
= —wie; +wj(cosbey + sinfbes). ( )
Comparing coefficients of eq, eo, e3 in (3.2.3) and (3.2.4), we get
wy = —wq,
cos 0 wy = wa + Twi2, (3.2.5)
sin 0 w3 = rwss.
This gives
wg + rwie = rcot B wqs. (326)

In order to compute the curvature, we compute the following 1-forms;

WTS = <d€i,€§>
= —(dey,—sinf ez + cosf e3)
= sinf@ w2 — cosb w3, using (3.2.6)

_ _Sln9w2, (3.2.7)
r

ws3 = (de3, €3)
= (cos fdes + sin Odes, — sin fey + cosy e3)

= W23.
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By the Gauss equation (3.0.3), we have

1o = wis Aw3s, using (3.2.7)
sin 6
= — wo N w23
r

sin 6 sin 6
= h12w1 A Wwo =
T

w1 A w13

sin 6
)wi Aws,

—

i.e., M* has constant curvature — ($22)2. By symmetry, M also has Gaussian
curvature —(S28)2 4

3.2.3. Integrability Theorem. Let M be an immersed surface of R with
constant Gaussian curvature —1, pg € M, vy a unit vector in T'M,,,, and r, 6
constants such that » = sin . Then there exist a neighborhood U of M at p,
an immersed surface M*, and a p.s. congruence ¢ : U — M™ such that the
vector joining po and p§ = £(po) isequal to rvy and 6 isthe angle between the
normal planesat p, and p;.

PrOOF. A unittangent vector field e; on M determinesalocal orthonor-
mal framefield e, eo, e3 such that eg isnormal to M. In order to find the p.s.
congruence, it sufficesto find a unit vector field e; such that the corresponding
frame field satisfies the differential system (3.2.6), i.e.,

T = wy +sinfwis — cos w3 = 0. (3.2.8)
Sincethe curvature of M isequal to —1, the Gauss equation (3.0.3) impliesthat
dwio = w1 Awa, Wiz Awsg = —wi A wa. (3.2.9)

Using (3.2.8) and (3.2.9), we compute directly:

dT = wo1 Awy +sinfwy A wg — cosBwia A was

= —wias A (w1 + cosOwaz) + sinf wy A wo,

. 9(— cos @ wiz + wa) A (wy + cosOwas) + sinfwy A wy, mod T,
sin
1
= — 9(—1 + cos? 0 + cos O hyy — cos 6 ho1)wi A ws + sinfwy A wa,
Sin

which is 0, because hi12 = hoi. Then the result follows from the Frobenius
theorem. =
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The proof of the following theorem isleft as an exercise.

3.2.4. Bianchi’s Permutability Theorem. Let ¢ : My — M; and
¢y : My — M, bep.s. congruencesin R® with angles 6., 6, and distance
sin 01, sin 05 respectively. If sin 6; # sin 5, then there exist a unique hyper-
bolic surface M3 in R® and two p.s. congruences ¢; : M; — M3 and (3 :
My — Ms with angles 65, 6 respectively, such that ¢ (¢1(p)) = ¢5(¢2(p))
for all p € My. Moreover M3 is obtained by an algebraic method.

Next we will discuss some special coordinates for surfaces immersed in
R3 with constant Gaussian curvature —1, and their relations to the Backlund
transformations.

3.25. Theorem. Suppose M is an immersed surface of R® with constant
Gaussiancurvature K = —1. Thenthereexistsalocal coordinatesystem(x, y)
such that

I = cos? g dx? + sin? p dy?, (3.2.10)

I1 = sin g cos (dz? — dy?), (3.2.11)
and u = 2 satisfies the Sne-Gordon equation (SGE):

Ugy — Uyy = SID u. (3.2.12)
This coordinate system is called the Tchebyshef curvature coordinate system.

Proor. Since K = —1, thereis no umbilic point on M. So we may
assume (p, q) areline of curvature coordinatesand A\; = tan ¢, Ao = — cot ¢,
i.e.,

w1 = A(p,q)dp, w2 = B(p,q)dg,

wig = tanpwi = tan pAdp, wa3 = — cot pws = — cot pB dg.
By Example 1.2.4, we have

B
q p
W12 = B dp + dq.

Substituting the above 1-forms in the Codazzi equations (3.0.4) we obtain

Agcosp+ Apgsing =0, Bpsing — By, cosp =0,

which implies that -2 is a function a(p) of p alone and ;- is a function

b(q) of ¢ done. Then the new coordinate system (x,y), defined by dx =
a(p) dp, dy = b(q) dq, gives the fundamental forms as in the theorem.
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With respect to the coordinates (z, y) we have
w12 = Py dz + g dy,

and the Gauss equation (3.0.3) becomes

Pgz — Pyy = SIN Y COS @,
i.e, u = 2p isasolution for the Sine-Gordon equation. =

Note that the coordinates (s, t), where
r=s+t y=s-—t,

are asymptotic coordinates, the angle u between the asymptotic curves, i.e., the
s—curves and t—curves, is equal to 2¢, and

I =ds* +2cosudsdt + dt?, (3.2.13)

Il =2sinudsdt. (3.2.14)
(s, t) arecalledthe Tchebyshef coordinates. The Sine-Gordon equation becomes

Ust = sinu. (3.2.15)

3.2.6. Hilbert Theorem. There is no isometric immersion of the simply
connected hyperbolic 2-space H? into R3.

PrROOF. Suppose H? can be isometrically immersed in R®. Because
A Ao = —1, thereisno umbilic points on H2, and the principal directions gives
a global orthonormal tangent frame field for H2. It follows from the fact that
H? issimply connected that the line of curvature coordinates (z, i) in Theorem
3.2.5isdefined for al (,y) € R?, and so isthe Tchebyshef coordinates (s, t).
They are global coordinate systems for H2. Then using (3.2.10) and (3.2.12),
the area of the immersed surface can be computed as follows:

/wl/\wzz/ sin g cos g dx A dy
R? R?

= —/ sin(2p) ds A dt = —/ 205t ds N dt
R? R?

= — lim 20t ds N\ dt = — lim —ps ds + py dt,

a— o0 Da a—o0 aDa
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where D, isthe squareinthe (s, t) planewith P(—a, —a), Q(a, —a), R(a, a)
and S(—a, a) asvertices, and 0D, isitsboundary. Thelast lineintegral can be
easily seen to be

2(p(Q) + ¢(5) — o(P) — p(R)).

Since I = cos? pdx? + sin? pdy? isthe metric on H?2, sin ¢ and cos ¢ never
vanish. Hence we may assume that the range of ¢ is contained in the interval
(0,7/2), which implies that the area of the immersed surface is less than 4.
On the other hand, the metric on H? can also be written as (dz? + dy?) /2 for

y > 0 and theareaof H? is
o0 o 1
/ / —dydzx,
—o0 JO )

which isinfinite, acontradiction. =

It follows from the fundamental theorem of surfaces in R® that there is

a bijective correspondence between the local solutions v of the Sine-Gordon
equation (3.2.12) whose range is contained in the interval (0, 7) and the im-
mersed surfaces of R® with constant Gaussian curvature —1. In fact, using the
same proof as for the Fundamental Theorem, we obtain bijection between the
global solutions u of the Sine-Gordon equation (3.2.12) and the smooth maps
X : R? — R? which satisfy the following conditions:

(i) rank X > 1 everywhere,

(i) if X isof rank 2 inan open set U of R?, then X |U is an immersion with
Gaussian curvature —1.

Theorem 3.2.3 and 3.2.4 give methods of generating new surfaces of R®
with curvature —1 from agiven one. So given asolution u of the SGE (3.2.12),
we can use these theorems to obtain a new solution of the SGE by the following
three steps:

(1) Usethefundamental theorem of surfacesto construct ahyperbolic surface
M of R® with (3.2.10) and (3.2.11) asits fundamental formswith ¢ = u /2.

(2) Solve thefirst order system (3.2.9) of partial differential equationson M
to get afamily of new hyperbolic surfaces M, in R>.

(3) On each My, find the Tchebyshef coordinate system, which gives a new
solution ug for the SGE.

However, the first and third steps in this process may not be easier than
solving SGE. Fortunately, the following theorem shows that these steps are not
necessary.

3.2.7. Theorem. Let/ : M — M* beap.s. congruence with angle ¢
and distance sin 6. Then the Tchebyshef curvature coordinates of M and M *
correspond under /.
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PROOF. Let (x,y) be the line of curvature coordinates of M as in
Theorem 3.2.5, and  the angle associated to M, i.e.,

I = cos® pda? +sin® pdy?, II = cos psin p(dz? — dy?).

Let vi = o ge V2 = smpay (the principal directions), 71, 7> the dual

coscp%’ 2 sin ¢

coframe, and 74 g the corresponding connection 1-forms. Then we have

71 = cos pdx, To = sinpdy,

Ti2 = Py dT + g dy,
Ti3 = tanp 7 = sinp dx, Tog3 = —cot p T = —cos ¢ dy.

Use the same notation asin the proof of Theorem 3.2.2, and suppose
e1 = cos avy + sinawy, e = — sinawy + CoS avs, (3.2.16)

where e; isthe congruence direction. We will show that the angle associated to
M* isa. Itiseasly seen that
w1 = €os & cos ¢ dx + sin asin ¢ dy,
wo = —sin a cos ¢ dxr + cos asin p dy,
w1z = (dey, e3) = cosasin p dx — sin a cos ¢ dy,
wo3 = (dea, €e3) = —sin arsin p dx — cos a cos ¢ dy.
Using (3.2.5), the first fundamental forms of M ™ can be computed directly as
follows:
I* = (W) + (w3)?
= (w1)? + (w13)”
= (cos a cos ¢ dx + sin asin p dy)? + (cos asin o dz — sin o cos @ dy)?
= cos? adx? + sin? a dy?.
Similarly,
IT" = wiwis + wiwis
= WiWw2 + w13wa3

= cos asin a(—dz? + dy?). =

Using the same notation as in the proof of Theorem 3.2.7, we have 115, =
pydr+p.dy, andwis = 712 +da. Comparing coefficientsof dx, dy in(3.2.8),
we get the Backlund transformation for the SGE (3.2.12):

{ oz + ¢, = —cotf cosp sina+ csc sina cos @, (3.2.17)

oy + @, = —cotf sinp cosa — csc cosa sin p.
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Theintegrability theorem 3.2.3impliesthat (3.2.17) issolvable, if ¢ isasolution
for (3.2.12). And Theorem 3.2.7 implies that the solution « for (3.2.17) isalso
asolution for (3.2.12).

The classical Backlund theory for the SGE played an important role in the
study of soliton theory (see [Lb]). Both the geometric and analytic aspects of
th;s trlleory were generaized in [18:39], [Tel] for hyperbolic n-manifolds in
R,

E. Cartan proved that a small piece of the simply connected hyperbolic
space H™ can be isometrically embedded in R**~!, and it cannot be locally
isometrically embedded in R?"~2 ([Cal,2], [M0]). Itisstill not known whether
the Hilbert theorem 3.2.6 is valid for n > 2, i.e., whether or not H™ can be
isometrically immersed in R?* 1?2

Exercises.

1. Let M beanimmersed surfacein R3. Two tangent vectorsu and v of M at
x are conjugate if 71 (u,v) = 0. Two curves « and 3 on M are conjugate
if o/(t) and 3’(t) are conjugate vectors for al t. Let ¢ : M — M* be
aline congruencein R?, e; and e] denote the common tangent direction
on M and M* respectively. Then the integral curvesof e} and d/(e;) are
conjugate curveson M ™.

Prove Theorem 3.2.4.

3. Let M, beasin Theorem 3.2.4, and ¢; the angle associated to M;. Show

that

N

03— o cosby — cosb tap P2~ A1

t —
M cos(0y — o) —1 02

3.3. Immersed flat toriin S?

Suppose M is an immersed surface in S with K = 0. Since K =
1 + det(h;;), we have det(h;;) = —1. So using a proof similar to that for
Theorem 3.2.5, we obtain the following local results for immersed flat surfaces

inS%.

3.3.1. Theorem. Let M be an immersed surface in S* with Gaussian
curvature 0. Then locally there exist line of curvature coordinates (x, y) such
that

I = cos?® pda? + sin” p dy?, (3.3.1)

IT = sin ¢ cos p(dz? — dy?), (3.3.2)
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where  satisfies the linear wave equation:

Pre — Pyy = 0. (3.3.3)

Letu =2,z =s+t,andy = s — t. Then we have

3.3.2. Corollary. Let M be an immersed surface in S® with Gaussian
curvature 0. Then locally there exist asymptotic coordinates (s, t) (Tchebyshef
coordinates) such that

I = ds* + 2 cosudsdt + dt?, (3.3.4)

IT = 2sinudsdt, (3.3.5)

where u is the angle between the asymptotic curves and

Ugy = 0, (3.3.6)

Suppose M isanimmersed surfaceof S® with K = 0. Let e 4 betheframe
field such that

1 0 1 0
€y = —; -, €4=X,
sin ¢ Oy

€1 = -
cos p Ox’

and e; normal to M in S®. Using the same notation as in section 2.1, we have

w1 = cospdr, wy =sinpdy, wiz = @, dr+ @, dy,

wis = sin p dx, waz = — cosy dy,
wig = —cospdx, wyy = —sinpdy, wsg = 0.
Then
dg = Og,

where g isthe O(4) —valued map whose i* row ise;, and © = (wap).

Conversely, given asolution ¢ of (3.3.3), let I, I 1 be given asin Theorem
3.3.1. Then (3.3.3) implies that the Gaussian curvature of the metric 7 is 0.
Moreover, the Gaussand Codazzi equationsare satisfied. So by thefundamental
theorem of surfaces in S* (Theorem 2.2.3), there exists an immersed local
surface in S® with zero curvature. In fact (see section 2.1), the system for
g:R* = 0O(4):

dg = Og, (3.3.7)
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issolvable, and the fourth row of g givesan immersed surfaceinto S* with I, T
as fundamental forms.

Similarly, we can aso use the Tchebyshef coordinates and the following
frame to write down the immersion equation. Let v, vo,v3, v4 be the local
orthonormal frame field such that v; = %, and vs = e3, v4 = e4. SO

V] =cospe] +sinpez, vy = —sinpe; + cosy es.

Let 7; bethe dual of v;, Tap = (dva,vp), andu = 2¢. Then we have

71 =ds+ cosudt, 7o = —sinudt, T2 = ugds,
T13 = sinudt, T93 = —ds + cosu dt,
T4 = —T1, T24 = —T2,

where . = 2. The corresponding o(4)—valued 1-form as in the fundamental
theorem of surfacesin S isT = P ds + Q dt, where

0 us, 0 -1

—us, 0 =1 0
P= 0 1 0 0 |’
1 0 O 0
0 0 sinu —cosu
. 0 0 cosu  sinu
Q=1 _ sinu —cosu 0 0
cosu —sinu 0 0

If us; = 0, then the following system for g : R* — O(4):
dg =Ty, (3.3.8)

is solvable, and the fourth row of ¢ gives an immersed surface into S* with
(3.3.4) (3.3.5) as fundamental forms and K = 0. Note that (3.3.8) can be

rewritten as
gS :Pg!
3.3.9
{gt =Qg. ( )

Every solution of (3.3.6) is of the form £(s) + n(t), and in the following we
will show that (3.3.9) reduces to two ordinary differential equations.
|dentifying R* with the 2—dimensional complex plane C? via the map

F(xlv s 71'4) = (wl + wo, w3 + .I‘4),

ie —1
r=(% ).

we have
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Thefirst equation of (3.3.9) gives a system of ODE:
7 =iz —w, w =z, (3.3.10)
which is equivalent to the second order equation for z : R — C:
2N +if 4+ 2=0. (3.3.11)
|dentifying R* with the C? viathe map

F(xy,...,24) = (21 +i22, 23 + i24),

0 je ™
Q= <iei“ 0 ) ’

And the second equation in (3.3.9) gives a system of ODE:

we have

Z =ie M, w' =ie™z, (3.3.12)
which is equivalent to the second order equation for z : R — C:
2 +in'd +2=0. (3.3.13)
So the study of the flat tori in S® reduces to the study of the above ODE.

In the following we describe some examples given by Lawson: Let S =
{(z,w) € C*||2]? + |w|? = 1}. then CP! ~ S* is obtained by identifying
(z,w) € S* with € (2, w), and the quotient map 7 : S* — S? is the Hopf
fibration. If v = (x,y,2) : S' — S* isan immersed closed curve on S?, then
7~ 1(y) isan immersed flat torus of S®. Infact, X (o, 0) = € (2(0),y(o) +
iz(0)) givesaparametrization for the torus. It followsfrom direct computation
that this torus has curvature zero, the 6 —curves are asymptotic, the Tchebyshef
coordinates (s,t) are given by t = o and s = 6 + «(o) for some function
«, and the corresponding angle « as in the above Corollary depends only on
t. These s—curves are great circles, but the other family of asympotics (the
t—curves) in general need not be closed curves. It is not known whether these
examples are the only flat tori in S°.
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3.4. Bonnet transfor mations

Let M beanimmersed surfacein N3(c), and e3 itsunit normal vector. The
parallel set M; of constant distancet to M isdefined to be {exp,, (tes(x)) | x €
M}. Note that

T+ to, if c=0;
exp,. (tv) = {costa:+sintv, ifc=1,
coshtx +sinhtv, ifc=—1.

If M, isan immersed surface, then we call it a parallel surface. The classical
Bonnet transformation is a transformation from a surface in R® to one of its
parallel sets. Bonnet’s Theorem can be stated as follows:

34.1. Theorem. Let X : M? — R3 beanimmersed surface, e its unit
normal field, and H, K the mean curvature and Gaussian curvature of M.

(i) If H = a # 0, and K never vanishes, then the parallel set M/, (defined
bythemap X* = X + %63) is an immersed surface with constant Gaussian
curvature a?.

(i) If K isa positive constant a2 and suppose that M/ has no umbilic points,
then its parallel set M, /, isanimmersed surface with mean curvature —a.

Thistheorem is a specia case of the following simple result :

34.2. Theorem. Let X : M? — N3(c) be an immersed surface, es its
unit normal field, and A the shape operator of M. Then the parallel set M * of
constant distancet to M defined by

X" =aX + bes (3.4.1)

is an immersion if and only if (e — bA) is non-degenerate on M, where
(a,b) = (1,0) for ¢ = 0, (cost,sint) for ¢ = 1, and (cosht,sinht) for
¢ = —1. Moreover, e5 = —cbX + aez isa unit normal field of A/*, and the
corresponding shape operator is

A* = (cb+ ad)(a — bA)~". (3.4.2)

Proor. We will consider only the case ¢ = 0. The other cases are
similar. Let e4 be an adapted local frame for the immersed surface M inR? as
in section 2.3. Taking the differential of (3.4.1), we get

dX* = dX + tdes,

= Zwiei —t Z hijwie;, . (3.4.3)

= 2(6” —1 hij)wiej =1 — tA



62 Part | Submanifold Theory

Hence X * isan immersion if and only if (I — tA) is non-degenerate. It also
follows from (3.4.3) that e 4 is an adapted frame for M *, and the dual coframe
isw} =>:(d; — hij)w;. Moreover, wiy = (de;j, e3) = w;3, SOWe have

A= AT —tA)™1. » (3.4.4)

3.4.3. Corollary. If M? isanimmersed Weingarten surfacein N3(c) then
so is each of its regular parallel surfaces. Conversely, if one of the parallel
surface of M isWeingarten then M isWeingarten.

Let A\, Ao be the principa curvatures for the immersed surface M in
N3(c), and \}, X3 the principal curvatures for the parallel surface M*. Then
(3.4.4) becomes

Af = (eb+aX;)/(a—bN\;).

As consequences of Theorem 3.4.2, we have

3.4.4. Corollary. Suppose X : M? — S? has constant Gaussian curvature
K= (1+7%) >1,andt = tan"'(1/r). Then

X" =costX +sintes

is a branched immersion with constant mean curvature (1 — r2) /r.

3.45. Corollary. Suppose X : M? — S® has constant mean curvature
H =r,andt = cot™1(r/2). Then

X" =costX +sintes
is a branched immersion with constant mean curvature —r.

We note that when r = 0 the above corollary says that the unit normal of
aminimal surface M in S* gives a branched minimal immersion of M in S°.
This was proved by Lawson [Lw1], who called the new minimal surface the
polar variety of M.

3.4.6. Corollary. Suppose X : M? — H? has constant Gaussian curvature
K =(-1+472)>2,andt = tanh™'(1/r). Then

X* =cosht X + sinhtes

is a branched immersion with constant mean curvature (1 + r2) /r.
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3.4.7. Corollary. Suppose X : M? — H?3 has constant mean curvature
H=r,7>2,and t = tanh™'(2/r). Then

X* =cosht X + sinhte;

is a branched immersion with constant mean curvature —r.

Exercises.

1. Proveanana ogueof Theorem 3.4.2forimmersed hypersurfacesin N1 (c).

2. Suppose M*? is animmersed, orientable, minimal hypersurface of S* and
the Gauss-Kronecker (i.e., the determinant of the shape operator) never
vanishes on M. Use the above exercise to show that +e4 : M3 — Stis
an immersion, and the induced metric on M has constant scalar curvature
6 ([De]).



Chapter 4
Focal Points

One important method for obtaining information on the topology of an
immersed submanifold A/™ of R"** isapplying Morse theory to the Euclidean
distance functions of M. Thisis closely related to the focal structure of the
submanifold. In thischapter, we give the definition of focal pointsand calculate
the gradient and the Hessian of the height and Euclidean distance functionsin
terms of the geometry of the submanifolds.

4.1. Height and Euclidean distance functions

Inthefollowing wewill assumethat M™ isanimmersed submanifold of Rtk
and X is the immersion. For v € R™"*, we let vT= and v+ denote the
orthogonal projection of v onto 7'M, and v(M ), respectively.

4.1.1. Proposition. Let ¢ denote a non-zero fixed vector of R"™*. and
he. : M — R denote the restriction of the height function of R"** to M, i.e,
ha(z) = (x,a). Then we have

(i) Vhg(z) = a’=, by identifying T* M with T'M,

(i) V2ho(X) = (I1(x),a), whichisequal to A,.. if weidentify @2T*M
with L(TM,TM),

(iif) Ah, = (H, a), where H isthe mean curvature vector of M.

PROOF. Sincedh, = (dX,a) = > wile;,a) = > (hg)iw;, we have
(ha)i = {e1,a). S0 Vhe = . {e;, a)w;. If weidentify T*M with TM via
the metric, then Vh, = ", (e;, a)e; = a™=. Using (1.3.6), we have

Z(ha)ijwj = d((ei,a) + ) _{em, a)wm.
Since

de; = E wije; + E WiaCa,
7 fe%

we have
(ha)ij = hiaj(€a,a),

which proves (ii), and (iii) follows from the definition of the Laplacian. =

64



4. Focal Points 65

4.1.2. Corollary. With the same assumptions asin Proposition 4.1.1,

(i) Apoint xg € M isacritical point of h, ifand only if a € v(M),,.

(i1) Theindex of h,, at the critical point x( isthe sum of the dimension of the
negative eigenspace of A, .

4.1.3. Corollary. LetX = (uy,...,unsx) : M — R"™* beanimmersion.
Then
AX = H,

where A is the Laplacian on smooth functions on M given by the induced
metric, and AX = (Auq, ..., Atpyg).

4.1.4. Corollary. Aclosed (i.e., compact without boundary) n-manifold can
not be minimally immersed in R™**.

Proor. It follows from Stoke's theorem that if M is closed and f :
M — R is asmooth function satisfying A f = 0, then f is a constant (cf.
Exercise 6(iv) of section 1.3). If M is minima, then Ah, = 0, so X is
constant, contradicting that X isan immersion. =

A similar argument asfor 4.1.1. gives

4.15. Proposition. Let a denote a fixed vector of R"** and f, : M — R
the restriction of the square of the Euclidean distance function of R"** to M,
i.e, fo(x) = ||z — al|*. Then we have

() Vfo(z) = 2(z — a)T=, if weidentify T* M with TM.

(i) %V2fa(ac) = I(z)+ (II(z), (x — a)), and by identifying ®27T* M with
L(TM,TM),wehave V2 f,(z) = Id — Ay_zyva,

(iii) Afo(x) =n — (H, (a — z)), where H isthe mean curvature vector of
M.

In Part 1l, Chapter 9, we define the Hessian of a smooth function f at a
critical point zo. Giventwo smoothvector fields X andY", X (Y f)(z() depends
only on the value of X, Y at z, so it defines a bilinear form Hess(f, zp) on
TM,,. Moreover, because XY — Y X = [X, Y] isatangent vector field and
dfz, = 0, Hess(f, z,) isasymmetric bilinear form.

4.1.6. Corollary. Wth the same assumption asin Proposition 4.1.5,
(i)apointzy € M isacritical point of f, ifandonlyif (a —xg) € v(M),
(i) If g isacritical point of £, then Hess(f, z0) = V2 f(xo).

(iii) Theindex of f, at thecritical point z( isthe sum of the dimension of the

eigenspace F', of A, corresponding to the eigenvalue A > 1.

R
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The critical points of h, and f, are closely related to the singular points
of the normal maps and the endpoint maps of M, which are defined asfollows:

4.1.7. Definition. The normal map N : v(M) — R""* and the endpoint
map Y : v(M) — R of animmersed submanifold M of R*** are defined
respectively by N(v) = v,and Y (v) =z + v, forv € v(M),.

4.1.8. Proposition. Let M beanimmersed submanifold of R*** and N.,Y
the normal map and the endpoint map of M respectively. Supposev € v(M ).,
and e, is an orthonormal frame field of »(M) defined on a neighborhood U
of zy, which is parallel at z( (i.e, VVe,(xg) = 0 for al a). Then using the
trivialization v(M)|U ~ U x R¥ viathe frame field e,,, we have

(i) dNy(u, z) = (= Ay (u), 2),

(i) dY,(u, z) = (I — Ay (u), 2).

PrOOF. Let X denote the immersion of M into R*™*. Then N =
Yoo Zata,adY =X + 3" z.eq. SO

dN = Zzawai X e; +Zzawaﬁ®eﬁ +Zdza X eq,

o, a3 a

dedX—i—dN:Zwi@ei—l—dN.

Thenthepropositionfollowsfromthefactthat e, isparallel at z¢, i.€., wa5(x0) =
0. =

4.1.9. Corollary. Wth the same assumption as in Proposition 4.1.8. Then
for v € v(M), we have

(i) v isa singular point of the normal map N (i.e., the rank of dN,, isless
than (n + k)) if and only if A, issingular; in fact the dimension of Ker(dN,)
and Ker A, are equal.

(i) v isa singular point of the end point map Y if and only if I — A, is
singular; in fact the dimension of Ker(dY, ) and Ker(/ — A,) areequal.

Let X : M — S*"* < R*"**! pe an immersion. We may choose a
local orthonormal frame eg, e1, ..., e,k SUch that eq, ..., e, are tangent to
M,eqo=X,ande,y1,...,enr aenormal to M in S*F*. Then we have

deo ZdXZZwi(X)BZ',

S0 wp; = wj, and wp, = 0. Since

dei :ZWZ]®€J —{—ZWia@ea_'_in@eOv

J (0%
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we have;

4.1.10. Proposition. Let X : M — S*** beanimmersion, anda € S***.
Then

(i) Vhe(z) = a’=, by identifying T* M with T M,

(i) V2h, = —hg I + (II,a), if we identify ®27* M with L(TM, T M),
then V2h, (z) = —ho I + Agve,

(ii]i) Ahg, = —nh, + (H, a), where H isthe mean curvature vector of M in
S

(i) AX = —nX + H.

41.11. Corollary. Let X = (uy,...,Upsps1) : M™ — S*™* bean
isometric immersion. Then M isminimal in S*** if and only if Au; = —nu;
for all 7, where A isthe Laplacian with respect to the metric on M.

Let X : M — H""* C R**%! be an isometric immersion, and e 4 as
above. Since
Wo; = Wio = W,

we have

4.1.12. Proposition. Let X : M — H"™* ¢ R***! beanimmersion, and
a € H""*. Then

(i) Vhe(x) = a’=, by identifying T* M with T M,

(i) V2hy = ho I + (II,a), and if weidentify @27 M with L(TM,TM),
then V2ho(z) = ho I + Agve,

(iiik) Ahg = nh, + (H,a), where H is the mean curvature vector of M in
H™ TR,

(V) AX =nX + H.
4.1.13. Corollary. There are no immersed closed minimal submanifoldsin
the hyperbolic space H".

If M isimmersedin S"** then f, = 1+ ||a||>—2h,. If M isimmersedin
H" % then f, = —1+|a||? — 2h,. Itfollowsthat for immersed submanifolds
of S*** or H"**, £, and —h, differ only by aconstant.

Exercises.

1. Let f : M — R beasmooth function on the Riemannian manifold M,
and p acritical point of f. Show that V2 f(p) = Hess(f),.
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4.2. Thefocal pointsof submanifolds of R"

Leta € R"™* anddefine f, : M — Rby f,(z) = ||z —al|? asinsection
4.1. It follows from Proposition 4.1.6 that ¢ isacritical point of f, if and only
if (a —q) € v(M),, and the Hessian of f, at acritical point g isl — A(,_g).
Note that I — A(,_g) is aso the tangential part of dY(, ,—,), Where Y isthe
endpoint map. Thisleads us to the study of focal points ([Mi1]).

4.2.1. Definition. Let X : M™ — R""* be an immersion. A point a =
Y (x, e) intheimage of theendpoint map Y of M, iscalled anon-focal point of
M withrespecttoz if dY(, .) isanisomorphism. If m = dim(Ker dY(, .)) >
0, then a is called afocal point of multiplicity m with respect to . The focal
set T of M in R*** isthe set of all focal points of M.

Note that a isafocal point of M if and only if a isacritical value of the
endpoint map Y, and the focal set I" of M isthe set of al critical valuesof Y.
It follows from Proposition 4.1.8 that

F'={zx+elzeM,ecv(M),, and det(I — A.) = 0}.

4.2.2. Example. Let M™beanimmersedhypersurfaceinR™™! and Ay, ..., \,
the principal curvatures of M with respect to the unit normal field e,,. Using
Proposition 4.1.8, wehave dY(, sc.) = I — Age, = I — tAc,. SO (z,teq) IS
asingular point of Y if and only if

det(dY{z,te,)) = [ [(1 = tAi) = 0.

2

Therefore ' N (a+ (M), ) isequal tothefiniteset {x + x{75ea(2)] X; # 0}
For example if M™ is the sphere of radius r and centered at ag in R™ 1!, then
I = {ao}; andif M = S' x R C R?, aright cylinder based on the unit circle,
thenT' =0 x R.

4.2.3. Example. Let M™ be animmersed submanifold of R***, and {e,,} a
local orthonormal normal frame field. Then it follows from Proposition 4.1.8
that

det(dY{z,e)) = det(I = Y zaAe,), (4.2.1)

wheree = ) zneq,and A, isthe shape operator in the normal direction e,
Note that (4.2.1) isadegree k£ polynomial with real coefficients, and in general
it can not be decomposed as a product of degree one polynomials. Hence the
focal set I' of M can be rather complicated.
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4.2.4. Example. Let M™ be an immersed submanifold of Rt with flat
normal bundle. It follows from Proposition 2.1.2 that {Ac|e € v(M),} isa
family of commuting self-adjoint operators on T'M,.. So there exist acommon
eigendecomposition TM,, = @@_, E; and p linear functionals o; on v(M),
suchthat A.|E; = a;(e)idg,. Sincev (M)} canbeidentified asv(M),, there
existv; € v(N), suchthat a;(e) = (e, v;). Sowe have

Ac|Ei = (e, v:)idE,

det(dY,) = det(I — A,) = ﬁu — (v;, €)™,

=1

SoI' N v, istheunion of p hyperplanes?; in v,., where v, isthe affine normal
plane x + v(M),.. We call the normal vectors v; the curvature normals and ¢;
the focal hyperplanes at x. In general, the focal hyperplanes at « do not have
common intersection points. But if M is contained in a sphere centered at a,
thena € v, andisafocal point of M with respect to x with multiplicitiesn for
dl z € M. Moreover, if k = 2, M iscontained in S**! ,and \q, ..., \, are
the principal curvatures of M as a hypersurface of S**!, then let e, ; bethe
normal of M in Sn+1, and €n42 ($) = z, we have )\i,n—i—l =\, )\i,n+2 = -1,
and ¢; istheline that passes through the origin with slope 1/ ;.

4.2.5. Proposition. If M™ isan immersed submanifold of codimension k& in
S+ with flat normal bundle, then, asan immer sed submanifold of codimension
k+1inR**+1 M also has flat normal bundle.

PrOOF. Let X : M — S""* pe the immersion, and {e4} be an
adapted local orthonormal frame for M such that {e, } is parallel with respect
to the induced normal connection of M, i.e., wag = 0. Set ey = X. Then
{€en+t1,---,Entk,€o}isanorthonormal framefieldfor thenormal bundlewv (M)
iNnR" ™1 SincedX = 3 wiey,

Wad — 0.

Thisprovesthat {e,,11,...,€entk, €0} isaparalel framefield for v(M). »

Since a hypersurface aways has flat normal bundle, any hypersurface of
S**! isacodimension 2 submanifold of R**2 with flat normal bundle. Propo-
sition4.2.5 asoimpliesthat the study of submanifoldsof spherewith flat normal
bundles is included in the study of submanifolds of Euclidean space with flat
normal bundles.

4.2.6. Theorem. Let M™ be animmersed submanifold of R*** ¢ € M,
ecv(M)yanda=Y(q,e) =q+e. Then
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() g isacritical point of f,,

(i) q is a non-degenerate critical point of f,, if and only if a is a non-focal
point of M,

(i) g isa degenerate critical point of f, with nullity m if and only if a isa
focal point of M with multiplicity m with respect to g,

(iv) Index( fa, q) isequal to the number of focal points of M with respect to
q on the line segment joining ¢ to a, each counted with its multiplicities.

PrROOF. Suppose A, haseigenvalues A1, . .., A, with multiplicitiesm;,
and eigenspace E;. Since Hess(f,,q) = V2f.(q) = I — A., the negative
space of theHessianisequal to P{E;| A; > 1}. 1f A; > 1, then0 < 1/); < 1
and det(/ — A./»,) = 0, which impliesthat ¢ + (e/);) isafocal point with
respect to ¢ with multiplicity m;. =



Chapter 5

Transformation Groups

The theory of Lie groups of transformations of finite dimensional mani-
foldsis acomplex, rich, and beautiful one, with many applications to different
branches of mathematics. For a systematic introduction to this subject we refer
thereader to [Br] and [Dv]. Because our interest isin the Riemannian geometry
of Hilbert manifolds, we will concentrate on isometric actions on such mani-
folds. In studying the action of aLie group G on afinite dimensional manifold
M, itiswell known that without the assumption that the group G is compact
or, more generaly, that the action is proper (cf. definition below) all sorts of
comparatively pathological behavior can occur. For example, orbits need not
be regularly embedded closed submanifolds, the action may not admit dlices,
and invariant Riemannian metrics need not exist. In fact, in the finite dimen-
sional case, properness is both necessary and sufficient for G to be a closed
subgroup of the group of isometries of M with respect to some Riemannian
metric. Ininfinite dimensions propernessis no longer necessary for the latter,
but it is sufficient when coupled with one other condition. This other condi-
tion on an action, defined below as “Fredholm”, is automatically satisfied in
finite dimensions. Aswe shall see, much of the richness of the classical theory
of compact transformation groups carries over to proper, Fredholm actions on
Hilbert manifolds.

5.1. G-manifolds

A Hilbert manifold M is a differentiable manifold locally modeled on
a separable Hilbert space (V, ( , )). The foundational work on Hilbert (and
Banach) manifolds was carried out in the 1960’'s. The standard theorems of
differential calculus (e.g., the inverse function theorem and the local existence
and uniquenesstheorem for ordinary differential equations) remainvalid ([La]),
and in [Sm2] Smale showed that one of the basic tools of finite dimensional
differential topology, Sard’s Theorem, could be recovered ininfinite dimensions
if one restricted the morphisms to be smooth Fredholm maps.

A Riemannian metric on M isasmooth section g of S?(T* M) such that
g(z) isaninner product for 7'M, equivalent to theinner product (, ) on V for
al x € M. Suchan (M, g) iscaled a Riemannian Hilbert manifold. For fixed
vector fields X and Z the right hand side of (1.2.2) defines a continuous linear
functional of T'M .. SinceT' M isisomorphicto 7'M, (1.2.2) definesaunique
element (V2 X)(x) inT M,, and theargument for aunique compatible, torsion

71
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free connection for ¢ is valid for infinite dimensional Riemannian manifolds,
so geodesics and the exponential map exp : T'M — M can be defined just
as in finite dimensions. A diffeomorphism ¢ : M — M is an isometry if
dpy : TMy — TM,(,) isalinear isometry foral x € M.

5.1.1. Definition. Let M and N be Hilbert manifolds. A smooth map
¢ : M — N iscdled animmersion if dp, isinjective and dp,.(T'M,) isa
closed linear subspace of T'N () for al x € M.

If the dimension of NV isfinite, then dy,. (T'M,,) is always aclosed linear
subspace of TN, (). So this definition agrees with the finite dimensiona case.

5.1.2. Definition. A Hilbert Lie group G is a Hilbert manifold with a group
structure such that the map (g1, g2) — g1g5 ' from G x G — G issmooth.

In this chapter we will always assume that manifolds are Hilbert manifolds
andthat LiegroupsareHilbert Liegroups. They can beeither of finiteor infinite
dimension.

Let G bealLiegroup, and M asmooth manifold. A smooth GG-action on
M isasmoothmap p : G x M — M such that

ex =, (9192)r = g1(g927),

foradl € M and g1,92 € G. Here e is the identity element of G' and
gz = p(g,x). This defines a group homomorphism, again denoted by p, from
G to the group Diff (M) of diffeomorphisms of M; namely p(g)(z) = gz.
Given a fixed such G-action, we say that G acts on M, or that M is a G-
manifold.

5.1.3. Definition. A G-manifold M with action p is

(i) linear, if M isavector space V and p(G) C GL(V), i.e, pisalinear
representation of G,

(2) affine, if M is an affine space V' and p(G) is a subgroup of the affine
group of V,

(3) orthogonal, if M isaHilbert space V and p(G) isasubgroup of the group
of linear isometriesof V, i.e,, p isan orthogonal representation of G,

(4) Riemannian or isometric, if M is a Riemannian manifold and p(G) is
included in the group of isometries of M.

5.1.4. Examples.
(1) The natural orthogonal action of SO(n) on R™ given by taking p to bethe
inclusion of SO(n) into Diff (R™).
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(2) The Adjoint action of G on G, defined by by Ad(g)(h) = ghg™*.

(3)Theadjoint action of G onitsLiealgebrag givenby g — d(Ad(g))., the
differential of Ad(g) at the identity e. If G is compact and semi-simple then
the Killing form b is negative definite, and the adjoint action is orthogonal with
respect to the inner product —b.

(4) SO(n) actson the linear space S of trace zero symmetric n x n matrices
by conjugation, i.e., g - = = gxg~—!. This action is orthogonal with respect to
the inner product (z, y) = tr(xy).

(5) SU(n) actson the linear space M of Hermitian n x n trace zero matrices
by conjugation. This action is orthogonal with respect to the inner product

<x7 y> = tr(:li@).

The differential of the group homomorphism p : G — Diff(M) at the
identity e gives aLie algebra homomorphism from the Lie algebra G to the Lie
algebra C>°(T'M) of Diff(M). We will denote the vector field dp. () by &
again, and identify G as a Lie subalgebra of C>°(T'M). In fact, if g; isthe
one-parameter subgroup in G generated by ¢ then () = %|t:0 gix. If M is
a Riemannian G-manifold, then the vector field ¢ isaKilling vector field.

5.1.5. Definition. If M isa G-manifold and x € M then Gz, the G-orbit
through z, and GG,., the isotropy subgroup at x are defined respectively by:

Gz = {gz | g € G},

G, ={9 € G| gz =z}

Theorbit map w, : G — M isthemap g — gx. Itisconstant on G,
cosets and hence definesamap w, : G/G, — M that is clearly injective,
with image Gz. Since G/G, has a smooth quotient manifold structure, this
meansthat we can (and will) regard each orbit as asmooth manifold by carrying
over the differentiable structure from G/G,.. Since the action is smooth the
orbits are even smoothly “immersed” in M, but it is important to note that
without additional assumptionsthe orbitswill not be regularly embedded in M,
i.e., the manifold topology that Gz inherits from G /G, will not in general be
the topology induced from M. Moreover Gz will not in general be closed in
M, and even the tangent space of Gx at x need not be closed in T'M,. The
assumptions of properness and Fredholm, defined below, are required to avoid
these unpleasant possibilities.

To preparefor the definition of Fredholm actionswe recall the definition of
a Fredholm map between Hilbert manifolds. If V', W are Hilbert spaces, then
abounded linear map 7' : V' — W is Fredholmif KerT" and Coker T are of
finite dimension. It isthen awell-known, easy consequence of the closed graph
theorem that 7'(V') isclosed in W. If M and N are Hilbert manifolds, then a
differentiablemap f : M — N isFredholmif df, isFredholm for all x in M.
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5.1.6. Definition. The G-action on M is called Fredholm if for eachxz € M
the orbit map w,. : G — M isFredholm. In this case we also say that M isa
Fredholm G-manifold.

5.1.7. Remark. Clearly any smooth map between finite dimensional mani-
folds is Fredholm, so if GG is afinite dimensional Lie group and M is afinite
dimensional G-manifold then the action of G on M isautomatically Fredholm.

5.1.8. Proposition. If M isany G manifold, then

(l) ngc = gng—l,

(ii) if Gz N Gy # 0, then Gz = Gy,

(iii) T'(Gz)o = {¢(z) | £ € G}

(iv) If theactionisFredholmthen eachisotropy group GG, hasfinitedimension
and each orbit G hasfinite codimensionin M.

Let M /G denote the set of all orbits, and 7 : M — M /G the orbit map
defined by = — Gz. The set M /G equipped with the quotient topology is
called the orbit space of the G-manifold M and will also be denoted by M.
The conjugacy class of aclosed subgroup H of G will be denoted by (H) and
iscalled a G-isotropy type. If Gx isany orbit of a G-manifold M, then the set
of isotropy groups G, = gG, g~ ! at points of Gz is an isotropy type, called
theisotropy type of the orbit, and two orbits (of possibly different G-manifolds)
are said to be of the same type if they have the same isotropy types.

5.1.9. Definition. Let M and N be G-manifolds. A mapping ' : M — N is
equivariantif F'(gz) = gF(z)fordl (g,x) € Gx M. Afunctionf : M — R
isinvariant if f(gz) = f(x) foral (g,z) € G x M.

If /' : M — N is equivariant, then it is easily seen that F'(Gz) =
G(F(z)),and G, C G p(,) with equality if and only if /" maps Gz one-to-one
onto G(F'(x)). It follows that two orbits have the same type if and only if they
are equivariantly diffeomorphic.

5.1.10. Definition. Let M be a G-manifold. An orbit Gz is a principal
orhit if there is a neighborhood U of = such that for al y € U there exists a
G-equivariant map from G'x to Gy (or equivalently thereexists g € G such that
G, C gGyg™1). (G,) isaprincipa isotropy type of M if Gz isa principal
orbit.

A point z iscalled aregular point if Gz isaprincipal orbit, and = iscalled
asingular point if Gx isnot aprincipal orbit. The set of al regular points, and
the set of al singular points of M will be denoted by M,. and M respectively.

5.1.11. Definition. Let M beaG-manifold. A submanifold .S of M iscalled
adliceat x if thereisa G-invariant open neighborhood U of Gx and a smooth
equivariant retractionr : U — Gz, suchthat S = r—1(z).
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5.1.12. Proposition. If M isa G-manifoldand S isa dliceat z, then
(YrxeSandG,.S C S,
(i) gS NS # O impliesthat g € G,
(iii) GS = {gs| (g,s) € G x S}isopenin M.

ProOOF. Letr:U — Gz bean equivariant retraction and S = r~1(x).
Then G, C G, fordl y € S, hence r|Gy is asubmersion. Thisimplies that
x isaregular value of r, so .S isasubmanifold of M. If y € Sand gy € S,
thenr(gy) = = = gr(y) = gz, ie, g € G,. If g € G, and s € S, then
r(gs) = gr(s) = gxr = z. Sowehave G;S C S. =

5.1.13. Corollary. If Sisadliceat z, then

(1) S isa G,-manifold,

(2 ify € S,thenG, C G,

(3) if Gxrisaprincipal orbitand G, iscompact, thenG,, = G, forall y € S,
i.e., all nearby orbits of Gz are principal of the same type.

(4) two G,-orbits G, s1 and G s5 of S are of the sametypeif and only if the
two G-orbits Gs; and G's, of M are of the same type,

(5) S/G, = GS/G, whichisan open neighborhood of the orbit space M /G
near Gx.

Proor. (1) and (2) follow from the definition of dlice. If y € S then
G, is aclosed subgroup of G, hence if G, is compact so is G,,. If Gz is
principal then, by definition, for y near x we also have that GG, is conjugate
to a subgroup of G,,. But if two compact Lie groups are each isomorphic to a
subgroup of the other then they clearly have the same dimension and the same
number of components. It then followsthat for y in S wemust have G, = G,.
Let K = G, and s € S. Using the condition (ii) of the Proposition we see that
K, =G,,and (4) and (5) follow. =

Exercises.

What are the orbits of the actionsin (1), (4) and (5) of Example 5.1.4 ?

Find all orbit types of the actionsin (1), (4) and (5) of Example 5.1.4.

Describe the orbit space of the actionsin (1), (4) and (5) of Example5.1.4.

Let S be the SO(n)-space in Example 5.1.4 (4), and X the set of all trace

zeron x n real diagonal matrices. Show that:

(i) X meetsevery orbit of S,

(i) if x € X, then Gz is perpendicular to 32,

(iii) let X° = {diag(z1,...,2,) | 21,..., 7, are distinct}, and S a
connected component of X°. Then S isadiceat z foral z € S.

E A
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5. Let M bethe SU(n)-spacein Example 5.1.4 (5), and ¥ the set of al trace
zeron x n real diagonal matrices. Show that
(i) X meets every orbit of M,
(i) if x € X, then Gz isorthogonal to 3,
(i) let X0 = {diag(x1,...,2,) | 71,..., %, are distinct}, and S a
connected component of X°, then Sisadiceat z foral z € S.
6. Describethe orbit space of the action of Example5.1.4 (3) for G = SU(n)
and G = SO(n).

5.2. Proper actions

5.2.1. Definition. A G-action on M is caled proper if g,z,, — y and
x, — x imply that g,, has a convergent subsequence.

5.2.2. Remark. Either of the following two conditions is necessary and
sufficient for a G-action on M to be proper:
(i) themap from G x M to M x M defined by (g, x) — (gz, x) is proper,
(i) given compact subsets K and L of M, theset {g € G| gK N L # 0} is
compact.

5.2.3. Remark. If G iscompact then clearly any GG-action is proper. Also, if
G acts properly on M, then all the isotropy subgroups GG, are compact.

Next we discuss the relation between proper actions and Riemannian ac-
tions.

5.2.4. Proposition. Let M beafinite dimensional Riemannian G-manifold.
If G isclosed in the group of all isometries of M then the action of G on M is
proper.

ProoF. Suppose g,x, — y and x,, — x in M. Since M is of finite
dimension, there exist compact neighborhoods K and L of x and y such that
x, € Kandg,K C L. Becausetheg, : M — M areisometries, {g,} is
equicontinuous, and it then follows from Ascoli’s theorem that a subsequence
of {g,} converges uniformly to some isometry g of M. Thusif G isclosed in
the group of isometries of M, g,, has a convergent subsequencein G. =

The above proposition is not true for infinite dimensional Riemannian G-
manifolds. A simple counterexample is the standard orthogonal action on an
infinite dimensional Hilbert space V' (the isotropy subgroup at the origin isthe
group O(V'), which is not compact). However, if M isaproper Fredholm (PF)
G-manifold, then there exists a G-invariant metric on M, i.e.,, G actson M
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isometrically with respect to thismetric. In order to provethisfact, we need the
following two theorems. (Although these two theorems were proved in [Pal]
for proper actions on finite dimensional G-manifolds, they generalize without
difficulty to infinite dimensional PF GG-manifolds):

5.2.5. Theorem. If M isaPF G-manifoldand {U,, } isalocally finite open
cover consisting of G-invariant open sets, then there exists a smooth partition
of unity { f, } subordinateto {U,, } such that each f,, is G-invariant.

Such { f. } iscalled aG-invariant partition of unity. Roughly speaking, it
isapartition of unity subordinate to the open cover {U,, } of the orbit space M.

5.2.6. Theorem. If M isaPF G-manifold, then given any x € M there
existsadiceat z.

5.2.7. Theorem. If M isa PF G-manifold, then there exists a G-invariant
metric on M, i.e., the G-action on M isisometric with respect to this metric.

Proor. Using Theorem 5.2.6, given any x € M there existsadlice S,
ax. Then{U, = GS, | = € M} isaG-invariant open cover of M. So we
may assume that there exists alocally finite G-invariant open cover {U,, } such
that U, = GS, and S, isthedliceat z,. Let {f,} beaG-invariant partition
of unity subordinateto {U,, }.

Since G, iscompact, by the averaging method we can obtain an orthog-
ona structure b, on T'M |S,, which is G, -invariant. Extend b,, to T M |U,
by requiring that b, (gs)(dgs(u1),dgs(u2)) = ba(s)(u1,us2) for g € G and
s € S4. Thisiswell-defined because b, isG . - invariant. Thenb = > f, b,
isaG-invariant metricon M. =

Asaconsequenceof Proposition 5.2.4and Theorem 5.2.7 weseethat afinite
dimensional G-manifold M is proper if and only if there exists a Riemannian
metric on M such that G isa closed subgroup of Iso(M).

5.3. Coxeter groups

In this sections we will review some of the standard results concerning
Coxeter groups. For details see [BG] and [BU].

Coxeter groups can be defined either algebraically, in terms of generators
and relations, or else geometrically. We will use the geometric definition. In
the following we will use the term hyperplane to mean atranglate ¢ of alinear
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subspace of codimension one in some R¥, and we let R, denote the reflection
in the hyperplane ¢. Given a constant vector v € R*, welet T}, : R — RF
denotethe trandation given by v, i.e., T, (z) = = + v. Recall that any isometry
¢ of R* isof the form o(z) = g(x) + vy (i.e., the composition of T,,, and g)
for some g € O(k) and vy € RF.

5.3.1. Definition. Let {¢; | i € I} be afamily of hyperplanesin R*. A
subgroup T of 1so(R¥) generated by reflections {R,,| i € I} is a Coxeter
group if the topology induced on W from Iso(R™) is discrete and the 1/ -action
on R” is proper. Aninfinite Coxeter group is also called an affine Weyl group.

5.3.2. Definition. Let W be a subgroup of 1so(R") generated by reflections.
A hyperplane ¢ of R” is called areflection hyperplane of W if the reflection
R, isan element of W. A unit normal vector to a reflection hyperplane of W
iscalled aroot of .

5.3.3. Définition. A family $ of hyperplanesin R* is locally finite if given
any = € R* thereexistsaneighborhood U of « suchthat {¢ | (U # 0, £ € )}
isfinite.

5.3.4. Definition. Let$ = {¢; |i € I} beafamily of hyperplanesin R*, and
v; aunit vector normal to ¢;. Therank of ) isdefined to be the maximal number

of independent vectorsin {v; | i € I}. If W isthe Coxeter group generated by
{R¢ | £ € 9}, then therank of W is defined to be the rank of $.

5.3.5. Proposition. Suppose ) is a locally finite family of hyperplanes
in R* with rank m < k. Then there exists an m-dimensional plane E in R*
such that the subgroup of 1so(R*) generated by {R, | ¢ € $} is isomorphic
to the subgroup of Iso(E) generated by reflections of E' in the hyperplanes
{{N E|t € ©}, theisomorphismbeing given by g — g|E.

Thus, without loss of generality, we may assume that a rank & Coxeter
group is asubgroup of 1so(R¥).

5.3.6. Theorem[Te5]. Let W the subgroup of 1so(R*) generated by a set of
reflections { R;| i € I}, and let $) denote the set of all reflection hyperplanes of
W. Then Wis a Coxeter group if and only if § islocally finite.

5.3.7. Corollary.  Let W be a subgroup of Iso(R*) generated by a set of
reflections { R;| i € 1}, and $) the set of reflection hyperplanes of . Suppose
that §) islocally finite and rank($)) = k. Then

(i) W isa Coxeter group of rank &,

(if) W permutes the hyperplanesin $),

(iii) if $ hasfinitely many hyperplanes, then 1V isafinitegroupand ({¢| ¢ €
9} ={z,} isapoint,
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(iv) if $ hasinfinitely many hyperplanes, then W is an infinite group.

5.3.8. Theorem. Let W bearank k Coxeter group on R¥, and § the set of
reflection hyperplanesof TV, Let U bea connected component of R\ | J{¢; | i €
I}, and U the closure of U. Then

(i) U is a fundamental domain of W, i.e., each W-orbit meets U at exactly
one point, and U is called a Weyl chamber of TV,

(i) U isasimplicial coneif W isfinite, and U isa simplex if W isinfinite.

539. Theorem. Let W bearank k finite Coxeter group on R*, and U a
Weyl chamber of W. Then there are k reflection hyperplanes ¢+, ..., ¢, of W
such that

{4 |1 <i<k}={xo}, isonepoint,

(ii) the boundary of U is contained in [ J{¢; | 1 < i < k},

(iii) W is generated by reflections { Ry, | 1 < i < k},

(iv) there exist unit vectors v; normal to Z; such that

U={zcRF (z,v;) >0forall 1 <i<k},

and {vy, ..., v} iscalled a simpleroot systemof V.

5.3.10. Theorem. Let IV bearank k infinite Coxeter group on R*, and U a
Weyl chamber of W. Then there are k + 1 reflection hyperplanes ¢4, . .., {x41
of W such that

N1 <i<k+1} =0,

(ii) the boundary of U is contained in [ J{¢; | 1 <i < k + 1},

(iii) W is generated by reflections { Ry, | 1 < i < k + 1},

(iv) there exist unit vectors v; normal to ¢; such that

U={zeRF (z,v;) >0forall 1 <i<k+1},
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and {v1,...,vr4+1} iscalled a smpleroot system for 1,

() if @ = {v € R¥| T, € W} isthe subgroup of translationsin 17/, then W/
isthe semi-direct product of W, and @, where p isa vertex of U and W, isthe
isotropy subgroup of W at p.

/NN

5.3.11. Definition. A rank k& Coxeter group W on R¥ is called crystallo-
graphic, if thereis arank k integer lattice I' which is invariant under . A
finite crystallographic group is also called a Weyl group.

5.3.12. Theorem. Let W be a Coxeter group generated by reflections
in affine hyperplanes {¢; | i € Iy}. Then W is crystallographic if and only
if the angles between any ¢; and ¢; is 7/p, for somep € {1,2,3,4,6}, or
equivalently, if and only if the order m;; of Ry, o Ry, i # j iseither infinite or
isequal to 2, 3,4 or 6.

Note that if, for i = 1,2, W; isaCoxeter group on R¥:, then W, x W is
a Coxeter group on RF1 %z,

5.3.13. Definition. A Coxeter group W on R¥ isirreducible if it cannot be
written as a product two Coxeter groups.

5.3.14. Theorem. Every Coxeter group can be written as the direct product
of finitely many irreducible Coxeter groups.

Let W beafinite Coxeter group of rank k, {v1, . .., v } asystem of simple
roots, R; the reflection along v;, and m;; the order of 1?; o ?;. The Coxeter
graph associated to 1V is a graph with & vertices with the " and j*" vertices
joined by aline (called abranch) with amark m; if m;; > 2 andisnot joined
by abranchif m;; = 2. Asamatter of convenience we shall usually suppress
the label on any branch for which m;; = 3. The Dynkin diagram is a Coxeter
graph with the further restriction that m;; = 2, 3,4, 6 or oo, in which branches
marked with 4 are replaced by double branches and branches marked with 6 are
replaced by triple branches. Similarly, we associate to an infinite Coxeter group
of rank k& agraph of k£ + 1 vertices.
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5.3.15. Theorem.

(1) ACoxeter groupisirreducibleif and onlyifitsCoxeter graphisconnected.

(2) If the Coxeter graph of W, and W5 are the same then 1/, isisomorphic
to Ws.

(3) If W isisomorphic to the product of irreducible Coxeter groups W7 x
... x W, and D; isthe Coxeter graph for W;, then the Coxeter graph of W is
thedigoint unionof D,..., D,.

Therefore the classification of Coxeter graphs gives the classifications of
Coxeter groups.

5.3.16. Theorem. If W isanirreduciblefinite Coxeter group of rank %, then
its Coxeter graph must be one of the following:

Ay o—0:-+0—o0

By o—=o0---0—2 o0

Dy, O—0 -+ O—I—Q

E o—o0 - I—o—@ k=6,7,8
F, o o2 o

Gy o—% o

Hg o—>o0 (n=5 or n>6)

I3 o5 o—o0

I4 O 5 ~ O I'e)

5.3.17. Corollary. If W is arank k finite Weyl group, then its Dynkin
diagram must be one of the following:

Ayp 0—©0:---0—0
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5.3.18. Theorem. If W isan irreducible infinite Coxeter group of rank &,
then its Dynkin diagram must be one of the following:

Ay

Ay,

By

o0

o——oO

1.




5. Transformation Groups 83

Gy o—c—

5.3.19. Chevalley Theorem. Let W be a finite Coxeter group of rank £ on

R”*. Thenthereexist k& W-invariant polynomialsuy, . . ., u; such that thering
of W-invariant polynomials on R* isthe polynomial ring R[u1, . . ., uz].
Exercises.

1. Classify rank 1 and 2 Coxeter groups directly by analytic geometry and
standard group theory.
2. Suppose W isarank 3 finite Coxeter group on R®.
(i) Show that TV leaves S? invariant,
(i) Describe the fundamental domain of W on S? for W = As, Bs.

5.4. Riemannian G-manifolds

Let M beaRiemannian Hilbert manifold. Recall that asmooth curve« isa
geodesicif Vo' = 0. Let exp,, : T'M;, — M denote the exponential map at
p- Thatis, exp,(v) = a(1), where o isthe unique geodesic with a(0) = p and
a’(0) = v. Thenexp,(0) = p and d(exp,)o = id. It followsthat for r > 0
sufficiently small the restriction ¢ of exp,, to the ball B,.(0) of radius r about
the origin of T'M,, is a diffeomorphism of B,.(0) onto a neighborhood of p in
M. Then ¢ is called a geodesic coordinate system for M at p. The supremum
of al such r is called the injectivity radiusof M a p. If ¢ : M — M isan
isometry and o is a geodesic, then (o) is aso a geodesic. In particular we
have

5.4.1. Proposition. If M isaRiemannianHilbertmanifoldandyp : M — M
isan isometry, then

p(exp,(tv)) = expy,) (t dpy(v)),

forp € M,and v € TM,. In particular, if ¢(pg) = po then in geodesic
coordinates near pg, ¢ islinear.

54.2. Corollary. If M isaRiemannian Hilbert manifoldand p : M — M
is an isometry, then the fixed point set of (:

F={zeM|p() =1}
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is a totally geodesic submanifold of M.

Proor. This follows from the fact that T'F, is the eigenspace of the
linear map dy,. with respect to the eigenvalue 1. =

In section 5.2 we used the existence of dlicesfor PF G-manifoldsto prove
the existence of G-invariant metrics. We will now see that conversely the
existence of dicesfor PF Riemannian actionsis easy.

Let V be an embedded closed submanifold of a Riemannian manifold M .
For r > 0 welet S,.(z) = {exp,(u)] x € N, u € v(N),, |ul| < r},
and v.(N) = {u € v(N), | = € N, |lu|| < r}. If exp maps v,.(INV)
diffeomorphically onto the open subset U,. = exp(v,-(N)), then U, iscalled a
tubular neighborhood of N. Suppose M is aPF Riemannian GG-manifold and
N = Gp. Thenthere existsan r > 0 such that exp,, is diffeomorphic on the
r-bal B, of T'M,, and expp(Br) N N hasonly one component (or, equivalently,
dar(p, N \ exp,(B;,)) > r). ThenU,. /, isatubular neighborhood of N = Gp
in M.

5.4.3. Proposition. Let M be a Riemannian PF G-manifold. Let » > 0 be
small enough that U,. = exp(v,.(Gx)) isatubular neighborhood of Gz in M.
Let S, denoteexp,, (v-(Gx),). Then

(1) Sy = 95,

(2) S, isadiceat x, which will be called the normal dliceat .

ProOOF. (1) is a consequence of Proposition 5.4.1. Since v,.(Gx) isa
tubular neighborhood, S, and S, are digoint if x # y. Soif ¢S, N S, # 0,
then Sy, = S, and gz = .

Let M beaG-manifold. The differential of the action G, defines alinear
representation « of GG, on T'M,, called the isotropy representation at x. Now
suppose that M is a Riemannian G-manifold. Then ¢ is an orthogonal repre-
sentation, and the tangent space 7'(Gx), to the orbit of z isan invariant linear
subspace. So the orthogonal complement v(Gz) ., i.e., thenormal plane of Gz
in M at z,isaso aninvariant linear subspace, and the restriction of theisotropy
representation of G, to v(Gx),, is called the slice representation at .

54.4. Example. Let M = (G be acompact Lie group with a bi-invariant
metric. Let G x G acton G by (g1, 92)-9 = 91995 ' Then M isaRiemannian
G x G-manifold (in fact a symmetric space), G is the diagona subgroup
{(g9,9)| g € G}, and the isotropy representation of G, ~ Gon TG, = G is
just the adjoint action as in Example 5.1.4 (3).

545. Example. Let M = G/K be a compact symmetric space, and G =
KC+P istheorthogonal decomposition with respect to —b, whereb istheKilling
foomon G. ThenTM.x = P and G.x = K. Let ad denote the adjoint
representation of G on G. Then ad(K)(P) C P. So it gives a representation
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of K on P, which is the isotropy representation of M at eK. For example,
M = (G x G)/G gives Example 5.4.4.

5.4.6. Remark. Theset of al isotropy representations for non-compact sym-
metric spaces is the same as the set of all isotropy representations for compact
Symmetric spaces.

5.4.7. Proposition. Let M bea Riemannian PF G-manifold, and x € M.
Then Gz isaprincipal orbit if and only if the slicerepresentation at « istrivial.

Proor. Let S denote the normal dliceat . Then G, C G, for al
y € S. So Gz isaprincipa orbitif andonly G, = G, foraly € S,i.e, G,
fixes S. Then the result follows from Proposition 5.4.1. =

54.8. Corollary. Let M bea Riemannian G-manifold, x a regular point,
and S, the normal dlice at x as in Proposition 5.4.3. Then G, = G, for all
y e S,.

5.4.9. Corollary. Let M beaRiemannian G-manifold, Gz aprincipal orbit,
andv € v(Gx),. Thenv(gz) = dg..(v) isawell-defined smooth normal vector
field of Gz in M.

ProOOF. Ifgx = ha,theng='h € G,. ByProposition5.4.7,d(g~1h),(v) =
v, whichimpliesthat dg, (v) = dh;(v). =

5.4.10. Definition. Let M beaRiemannian G-manifold, and IV anorbit of M.
A sectionu of (V) iscalled an equivariant normal fieldif dg,, (u(z)) = u(gx)
foralge Gandzx € N.

54.11. Corollary. Let M be a Riemannian G-manifold, Gz a principal
orbit, and {v, } an orthonormal basis for v(Gx),. Let v, be the equivariant
normal field defined by v,, asin Corollary 5.4.9. Then {2, } isa global smooth
orthonormal frame field on Gz. In particular, the normal bundle of Gz in M
istrivial.

5.4.12. Proposition. Let M beaRiemannian G-manifold, N anorbitin M,
and v an equivariant normal field on N. Then

(1) Ay(ga) = dga © Ay 0 dg;t for all z € N, where A, is the shape
operator of N with respect to the normal vector v,

(2) the principal curvatures of N along v are constant,

(3) {exp(v(z))| x € N} isagain a G-orbit.
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Proor. Sincedg,(T'N,) = TNy, and gisanisometry, (1) follows. (2)
isaconsequenceof (1). Sincev(gx) = dg..(v(z)), (3) followsfrom Proposition
541 »

5.4.13. Corallary. Let N"(c) be the simply connected space form with
constant sectional curvature ¢, G a subgroup of Iso(N™(c)), M a G-orbit, and
v an equivariant normal field on M. Then {Y(v(z)) | * € M} isagain a
G-orbit, where Y is the endpoint map of M in N™(c).

We will now consider the orbit types of PF actions.

5.4.14. Proposition. If M isa PF G-manifold, then there exists a principal
orbit type.

Proor. ByRemark5.2.3all of theisotropy subgroupsof M arecompact.
It followsthat there exists an isotropy subgroup, Gz, having minimal dimension
and, for that dimension, the smallest number of components. By Theorem 5.2.6,
there existsadlice S at . Then G'S is an open subset, and G5 C G, for al
s € S. By thechoice of z it followsthat infact G, = G, forall s € S. But
then Gys = gGsg™' = gG,g™!, 50 (G,,) isaprincipa orbit type. =

5.4.15. Theorem. If M isa PF G-manifold, then the set M,. of regular
points is open and dense.

Proor. Openness follows from the existence of slice. To prove dense-
ness, we proceed as follows: Let U be an open subset of M, x € U,and S a
diceat x. Choosey € GS N U sothat G, has smallest dimension and, for
that dimension, the smallest number of components. Let S, be a slice a v,
and z € GSo NU NGS. It followsform Corollary 5.1.13 (2) that there exists
g € Gsuchthat G, C gG,g~'. Since the dimension of G, is less than or
equal to the dimension of G, we conclude that G, and G, in fact have the
same dimension, and then since the number of components of G, is less than
or equal to the number of componentsof G, G, = gG,g~*. This provesthat
Gy isaprincipa orbit. =

5.4.16. Theorem. If M isaPF G-manifoldthen givenapointp € M there
exists a G-invariant open neighborhood U containing p such that U has only
finitely many G-orbit types.

Proor. By Theorem 5.2.7 we may assume that M isa PF Riemannian
G-manifold. Let S be the normal dlice at p. Then S is of finite dimension,
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and GG, is a compact group acting isometrically on S’ so, by 5.1.13(4), it will
suffice to prove this theorem for Riemannian G-manifolds of finite dimension
n. We prove this by induction. For n = 0 the theorem istrivial. Supposeitis
truefor all proper G-manifolds of dimension lessthan n and let M be a proper
Riemannian G-manifold of dimensionn, p € M, and S the normal dlice at p.
By 5.1.13(4) again, it will suffice to provethat locally S has only finitely many
orbit types. If dim(S) < n, then this follows from the induction hypothesis,
so0 assume that dim(.S) = n. Then by Proposition 5.4.1 the G ,-action p on S
is an orthogonal action on 7'M,, = R™ with respect to geodesic coordinates.
Now G, leaves S"~ ! invariant and, by the induction hypothesis, locally S*~*
has only finitely many orbit types. But then because S* ! is compact, it has
finitely many orbit types altogether. Now note that, in alinear representation,
theisotropy group (and hencethetypeof an orbit) isconstant on any linethrough
the origin, except at the origin itself. So p has at most one more orbit typeon S
than on S* 1, and hence only finitely many orbit types. =

5.4.17. Theorem. If M isa PF G-manifold, then the set M, = M, /G of
singular orbits does not locally disconnect the orbit space M = M /G.

Proor. Using the dlice representation as in the previous theorem, it
sufficesto provethistheorem for linear orthogonal G-actionon R™. We proceed
by induction. If n = 1, then we may assumethat G = O(1) = Z,. Itiseasily
seen that R/G is the half line {x| x > 0} with 0 as the only singular orbit.
So {0} does not locally disconnect R/G. Suppose G C O(n). Applying the
induction hypothesis to the slice representation of S* !, we conclude that the
set of singular orbits of S"~! does not locally disconnect S* ! /G. But R" /G
is the cone over S" ! /(. So the set of singular orbits of R™ does not locally
disconnect R"/G. =

5.4.18. Corollary. If M isa connected PF G-manifold, then
(1) M/G is connected,
(2) M hasa unique principal orbit type.

54.19. Corollary.  Suppose M is a connected PF G-manifold. Let m =
inf{dim(G,) | x € M}, and k the smallest number of components of all the
dimension m isotropy subgroups. Then an orbit Gz isprincipal if and only if
G, hasdimension m and k components.
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5.5. Riemannian submersions

A smooth map 7 : £ — B isasubmersion if B is a finite dimension
manifold and therank of dr, isequal tothedimensionof B. ThenV = ker(dr)
is a smooth subbundle of T'FE called the tangent bundle along the fiber (or the
vertical subbundle). In case FF and B are Riemannian manifolds we define the
horizontal subbundle H of T'E to be the orthogonal complement V- of the
vertical bundle.

5.5.1. Definition. Let E and B be Riemannian manifolds. A submersion
7w : F — Biscaled aRiemannian submersion if dm, maps H, isometrically
onto T'B(,) fordl z € E.

The theory of Riemannian submersions, first systematically studied by
O'Neil [On], plays an important role in the study of isometric actions, as we
will seein the following.

55.2. Remark. Let M be aPF Riemannian G-manifold. Suppose M has
asingle orbit type (H), and H = G,. Thentheorbitmapp : M — M isa
smooth fiber bundle. If S'isadliceat x, then we get alocal trivialization of p on
the neighborhood G'S' of the orbit Gz using the diffeomorphism G/H x S =~
GS defined by (gH,s) — gs. There is a unique metric on M such that
p is a Riemannian submersion. To see this, we define the inner product on
T M, by requiring that dp, : v(Gz), — T M, is an isometry. Since
dg(T(Gz),) = T(Gx),4, and dg, iSanisometry, dg, mapstheinner product
space v(Gx),, isometrically onto v(Gx) 4. This shows that the metric on M
is well-defined, and it is easily seen to be smooth. Actualy, in this case M
is a smooth fiber bundle in a completely different but important way. First,
itisclear that M is partitioned into the closed, totally geodesic submanifolds
F(gHg™ '), wherethelatter denotesthefixed point set of the subgroup g Hg .
Clearly F(g1Hg;') = F(g2Hgy ') if and only if gy N(H) = g2N(H),
where N (H) denotes the normalizer of H in G. Thus we get a smooth map
II: M — G/N(H)havingthe F(gHg~') asfibers. Notethat N (H) actson
F(H),anditiseaslly seenthat thefibrationII : M — G/N(H) isthebundle
with fiber F'( H) associated to the principal N (H)-bundleG — G /N (H).
What is most important about this second realization of M as the total
space of adifferentiable fiber bundle is that it points the way to generalize the
first when M has more than one orbit type. Inthiscaselet (H) be afixed orbit
typeof M,say H = G,. Then F' = F(H) isagain a closed, totally geodesic
submanifold of M, and F* = F*(H) = {x € M | G, = H} isan open
submanifold of F'. Just as above, we see that M g is a smooth fiber bundie
over G/N(H) with fiber F'*. In particular each orbit type M g is asmooth
G-invariant submanifold of M. But of course Mg has asingle orbit type, so

as above its orbit space M (g has anatura differentiable structure making the



5. Transformation Groups 89

orbitmapyp : Mgy — M(H) asmooth fiber bundle, and a smooth Riemannian
structure making p a Riemannian submersion. Now we have aready seen that
the decompositions of M and M into the orbit types My and Mgy are
locally finite. Infact they have all the best properties one can hope for in such
asituation. To be technical, they are stratifications of M and M respectively
and, by what we have just noted, the orbit map p : M — M is a stratified
Riemannian submersion.

5.5.3. Definition. Let 7 : E — B be a Riemannian submersion, V' the
vertical subbundle, and H the horizontal subbundle. Then avector field ¢ on E
is

(1) vertical, if {(z) isinV, fordl z € E,

(2) horizontal, if £(z) isinH, foral x € E,

(3) projectable, if there exists avector field » on B such that d= (&) = n,

(4) basic, if it is both horizontal and projectable.

5.5.4. Proposition. Let7 : ¥ — B bea Riemannian submersion.

(1) If 7 is a smooth curve on B then given pg € 7 1(7(to)) there exists a
unique smooth curve 7 on E such that 7/(t) is horizontal for all ¢, 7(7) = T,
and 7(to) = po. 7 iscalled the horizontal lifting of 7 at py.

(2) If n isa vector field on B, then there exists a unique basic field  on £
such that d=(77) = n, which is called the horizontal lift of 7. In fact, this gives
a one to one correspondence between C'>° (7'B) and the space of basic vector
fieldson E.

5.5.5. Proposition. If X isvertical and Y is projectable then [ X, Y] is
vertical.

Proor. Thisfollowsfrom the fact that

dr([X,Y]) = [dn(X),dn(Y)]. =

55.6. Proposition. Let 7 : £ — B be a Riemannian submersion, 7 a
geodesicin B, and 7 itshorizontal liftingin E. Let L(«) denote the arc length
of the smooth curve o, and E, = 7~ 1(b). Then

(1) L(7) = L(7),

(2) 7 perpendicular to the fiber £, for all ¢,

(3)if risaminimizing geodesicjoiningptogin B, then L(7) = d(E,, E,),
the distance between the fibers £, and E,,

(4) T isageodesic of E.
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Proor. (1) and (2) are obvious. (4) isaconsequence of (3). It remains
to prove (3). Suppose T isaminimizing geodesic joiningp and g in B. If aisa
smooth curvein £ joining apointin £, toapointin £, then 7o« isacurveon
Bjoiningp,q. So L(ro«) > L(7). Leta’ = u+ v, where u isthe horizontal
component and v is the vertical component of «’. Since ||dr(u)|| = ||| and
dr(v) =0, |[|[dr(a/)]| < ||&||. Sowe have

which impliesthat 7 isageodesic, d(E,, E,) = L(7).

55.7. Corollary. Letnw : E — B bea Riemannian submersion. If o is
a geodesic in E such that o’ (%) is horizontal then o’(t) is horizontal for all
t (or equivalently, if a geodesic o of E is perpendicular to E, ;) then it is
perpendicular to all fibers E, ;).

PROOF. Letpy = o(ty), 7 thegeodesic of B such that 7(ty) = 7(po)
and 7' (tg) = dn(o’(tp)). Let 7 be the horizontal lifting of 7 at py. Then both
o and 7 are geodesics of E passing through p, with the same tangent vector at
Po. SO0 =T. m

55.8. Corollary. Let7: F — B beaRiemannian submersion, and H the
horizontal subbundle (or distribution).

() If ‘H isintegrable then the leaves are totally geodesic.

(2) If H isintegrable and S is a leaf of H then 7|.S isalocal isometry.

55.9. Remark. If F = 7~1(b) isafiber of = then H|F isjust the normal
bundle of ' in E. There exists a canonical global paralelism on the normal
bundle v(F"): asection v of v(F') is called w-parallel if dn(v(x)) is afixed
vector v € T' By, independent of = in F. Clearly v — v isabijective correspon-
dence between r-parallél fieldsand 1'B,,. Thereisanother paralelismon v(F')
given by the induced normal connection V* as in the submanifold geometry,
i.e,,anormal field ¢ isparallel if V¢ = 0. Itisimportant to notethat in general
the -parallelismin v(F) is not the same as the parallel translation defined by
the normal connection V. (The latter isin general not flat, while the former is
always both flat and without holonomy.) Nevertheless we shall see later that if
"H isintegrable then these two parallelisms do coincide.

55.10. Remark. Let M be a Riemannian G-manifold, (H) the principal
orbit type, and 7 : Mgy — M( ) the Riemannian submersion given by the
orbit map. Then anormal field £ of aprincipal orbit Gx is G-equivariant if and
only if £ ism-paralléel.



5. Transformation Groups 91

5.5.11. Definition. A Riemanniansubmersionn : ¥ — Biscaledintegrable
if the horizontal distribution H isintegrable.

We will first discuss the local theory of Riemannian submersions. Let
7w : ' — B be aRiemannian submersion. Then there is aloca orthonormal
framefieldes4 on F suchthat eq, ..., e, arevertical and e, 11, ..., e,k @€
basic. Then {e = dm(e,)} isaloca orthonormal frame field on B. We use
the same index convention asin section 2.1, i.e.,

1<i,jk<n,n+1<apB,7y<n+k 1<ABC<n+k.

Let wq and w? bethe dual coframe, and w4, wzﬁ the Levi-Civita con-
nectionson E and B respectively. Then 7*(w} ) = w,. Assume that

Wia = Y Giagws + ¥ _Tiajwj - (5.5.1)
3 j

wap =T (Whg) + D bagiw; - (5.5.2)

Note that
dwe, = d(m*w}) = 1 (dw})

=7" szﬁ/\wg
B

=) 7" (wap) Aws,
B

which does not have w; A wg and w; A w; terms. But the structure equation
gives
dwy = Zwag Awg + Zwm- A wj. (5.5.3)
J I

So the coefficients of w; A wg and w;w; in (5.5.3) are zero, i.e.,

baﬁi = aiag, (554)

Tiog = Tjoui- (555)

Note that the restriction of w;, and w,g to the fiber F' are the second
fundamental forms and the normal connection of F'in E. Infact, > rjqw; ®
w; ® eq IS the second fundamental form of F and wap = ), bapiwi =
>, Giapw; istheinduced normal connection of the normal bundle v(F') in E.

Next we describe in our notation the two fundamental tensors A and T’
associated to Riemannian submersionsby O’ Neil in[On]. Let v and v denote
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the horizontal and vertical components of v € T'E,,. Then it is easy to check
that

T(X,Y) = (Vx:Y)" + (Vx. Y7,
AX,Y) = (Vxn Y7 4+ (Vxn YY),

define two tensor fieldson E. Using (5.5.1) and (5.5.2), these two tensors are

T = erai(wi Qw; Qeq —w; wa D ej),

A= ajpa(wa Ow; ® eg — wa @ ws @ €;).

If H is integrable then, by Corollary 5.5.8, each leaf S of H is totally
geodesic and e,,|.S is alocal frame field on S. Thus the second fundamental
formon S iszero, i.e, V. _e; isvertica, or a;o3 = 0. Note that e;|F' form a
tangent frame field for the fiber F°, and e, | F" isanormal vector field of F. By
Proposition 5.5.5, [e;, eo] = V¢, eq — Ve, e; isvertica, sowehave V. e, is
vertical, i.e., e, | F' is parallel with respect to the induced normal connection of
FinE.

Conversely, suppose e, | F' isparallel for every fiber F' of 7, i.e, V., e, iS
vertical, or w,s(e;) = 0. By (5.5.1) (5.5.2) and (5.5.4), we have

0 =wap(€;) = bapi = Giap = wial(ep).

The torsion equation implies that

lear€s] = Ve €5 — Vesea = > _(wpalea) —waales))ea.
Hence [e,, eg] ishorizontal, i.e., H isintegrable. So we have proved:

55.12. Theorem. Letw: E — B bea Riemannian submersion. Then the
following statements are equivalent:

(i) misintegrable,

(i) every m-parallel normal field on the fiber ¥ = 7—1(b) is parallel with
respect to the induced normal connection of F'in E,

(iii) the O’ Neil tensor A is zero.
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5.6. Sections

Henceforth M will denote a connected, complete Riemannian G-mani-
fold, and M, is the set of regular points of M. As noted above, we have a
Riemannian submersion 7 : M, — M,.. Weassume al the previous notational
conventions. In particular we identify the Lie algebra G of G with the Killing
fieldson M generating the action of G.

5.6.1. Proposition. If¢ € G and o isa geodesic on M, then the quantity
(o'(t),&(o(t))) isa constant independent of ¢.

Proor. If¢isaKillingfieldand V¢ = Zfijei®wj,then§ij—i—§ji =0.
So (V,&,0") = 0. Sinceo isageodesic, V.o’ = 0, which implies that

d
1 (6(0).0") = (Vor6,0') + (€(0), Voro') = 0.

It will be convenient to introduce for each regular point x the set 7 (x),
defined as the image of v(Gx), under the exponential map of M, and aso
7. (x) =T (x) N M, for the set of regular pointsof 7 (x). Notethat 7 () may
have singularities.

5.6.2. Proposition. For each regular point x of M:

(1) 97 (2) = T (gz) and g7, (z) = T, (gz),

(2) for v € v(Gx), the geodesic o(t) = exp,,(tv) is orthogonal to each
orbit it meets,

(3) if G is compact then 7 () meets every orbit of M.

Proor. (1) followsfrom Proposition 5.4.1, and (2) followsfrom Propo-
sition 5.6.1. Finally suppose GG is compact and givenany y € M, since Gy is
compact, we can choose g € GG sothat gy minimizesthe distancefrom x to Gy.
Let o(t) = exp(tvg) beaminimizing geodesic from =z = ¢(0) to gy = o (s).
Then o isperpendicular to Gy. By (2), o isalso orthogonal to Gx. In particular
vg = 0’(0) € v(Gzx), sothearbitrary orbit Gy meets 7 (z) = exp(v(Gx),)
atexp(svg) = gy. m

Let x be aregular point and .S anormal sliceat z. If S is orthogonal to
each orbit it meetsthen sois gS. Thisimpliesthat the Riemannian submersion
7 . M, — M, isintegrable. Since for most Riemannian G-manifold M the
submersion = : M, — M, isnot integrable, a normal slice isin general not
orthogonal to each orbit it meets.

5.6.3. Example. LetS'actonR? x R? by e (21, z3) = (€21, e 25). Then
p = (1,0) isaregular point. Itiseasy to check that y = (1,1) € 7 (p) and
7 (p) isnot orthogonal to the orbit Sy.



94 Part | Submanifold Theory

5.6.4. Definition. A connected, closed, regularly embedded smooth subman-
ifold > of M iscalled asection for M if it meetsall orbits orthogonally.

The conditions on 3. are, more precisely, that G = M and that for each
x € X, TY, Cv(Gr),. ButsinceT (Gz), isjusttheset of {(x) where¢ € G,
this second condition has the more explicit form

(*) Foreachz € Y and ¢ € G, £(z) isorthogonal to T,

In the following we will discuss some basic properties for G-manifolds
that admit sections. For more detail, we refer the reader to [PT2].

Itistrivial that if > isasectionfor M thensoisgX: foreachg € G. Since
GY. = M, it follows that if one section 3 exists then in fact there is a section
through each point of M, and we shall say that M admits sections.

5.6.5. Example. All the examplesin 5.1.4 admit sections. In fact, for (1),
{ru| r € R} isasection, where v is any unit vector in R"; for (2) a maximal
torusisasection; for (3) amaximal abelian (Cartan) subalgebraisasection; for
(4) and (5), the space of all trace zero real diagonal matricesis a section.

5.6.6. Definition. The principal horizontal distribution of a Riemannian G-
manifold M isthe horizontal distribution of the Riemannian submersion on the
principa stratum 7 : M, — M,..

If Y isasectionof M thentheset >,. = >N M,. of regular pointsof Y isan
integral submanifold of the principal horizontal distribution H of the G-action.
Since M, is aways connected, it follows from Corollary 5.5.8, Remark 5.5.10
and Theorem 5.5.12 that we have:

5.6.7. Theorem. If M admits sections, and > is a section, then

(1) the principal horizontal distribution H isintegrable;

(2) each connected component of 3, = > N M,. isaleaf of H;

(3) if F'isthe leaf of H through a regular point x then x| F' is a covering
isometry onto M,.;

(4) X istotally geodesic;

(5) there is a unique section through each regular point z of M, namely
T (z) = exp(v(G)a).

(6) an equivariant normal field on a principal orbit is parallel with respect
to the induced normal connection.

5.6.8. Remark. Onemight naively hopethat, conversely to Theorem 5.6.7(1),
if H is integrable then M admits sections. To give a counterexample take
M = S' x S'andlet G = S' x {e} acting by translation. Let ¢ denote the
vector field on M generating the action of G and let , denote an element of the
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Lie algebraof S! x S! generating a nonclosed one parameter group ~. If we
choose the invariant Riemannian structure for M making & and n orthonormal
then asection for M would have to be a coset of v, which isimpossible since
isnot closed in M. This also gives a counter example to the weaker conjecture
that if a compact G-manifold M has codimension 1 principa orbits then any
normal geodesic to the principal orbitisasection. Itisprobably truethat if H is
integrable, then aleaf of H can be extended to be a complete immersed totally
geodesic submanifold of M, which meets every orbit orthogonally. However
we can prove thisonly in the real analytic case.

5.6.9. Proposition. Suppose G isacompact Liegroup, and M a Riemannian
G-manifold. Let z( bearegular point of M, and 7 = exp(v(Gxg)s, ). If H
isintegrable and 7 is a closed properly embedded submanifold of M, then 7
IS a section.

PRrOOF. By Proposition 5.6.2(3), it sufficesto show that 7 is orthogonal
to Gz for al x € 7. Let F' denote the leaf of H through zy. By Corollary
5.5.8, F'istotaly geodesic. So F'isopenin7 and 7 isorthogonal to Gy for
aly € F. Now supposez € 7 \ F. Sinceexp,, : T7, — 7T isregular aimost
everywhere, there is an open neighborhood U of the unit sphere of 17, such
that for all v € U thereisanr > 0 suchthat o, (r) = exp,(rv) isin F. Then
by Proposition 5.6.2(2) o/, (0) = visnorma to Gx.

It is known that any connected totally geodesic submanifold of a simply
connected, complete symmetric space can be extended uniquely to one that is
complete and properly embedded (cf. [KN] Chapter 9, Theorem 4.3). So we
have

5.6.10. Corollary. Let M = G/K beasimply connected complete symmet-
ric space, and H a subgroup of G. Then the action of H on M admits sections
if and only if the principal horizontal distribution of thisaction isintegrable. In
particular if the principal H-orbit is of codimension one then the H-action on
M has a section.

It follows from Theorem 5.5.12 that

5.6.11. Theorem. Thefollowing statementsare equivalent for a Riemannian
G-manifold M:

(1) the principal horizontal distribution H isintegrable,

(2) every G-equivariant (i.e., w-parallel) normal vector field on a principal
orbit is parallel with respect to the induced normal connection for the normal
bundle v(Gz) in M,

(3) for each regular point = of M, if S isthe normal slice at = then for all
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¢egGands e S, {(s)isnormal to S.

5.6.12. Proposition. Let V' be an orthogonal representation of G, x a
regular point of V', and X the linear subspace of ' orthogonal to the orbit G
at x. Then the following are equivalent:

(i) V admits sections,

(i) X isasection for V/,

(iii) for eachvin X and € in G, £(v) isnormal to X.

Inthefollowing, M isaRiemannian G-manifold that admits sections. Let
x be aregular point of M, and X the section of M through x. Recal that a
small enough neighborhood U of x in Y isadlice a x and so intersects each
orbit near Gz inaunique point. Also recall that GG, actstrivially on ..

In general given a closed subset S of M welet N(S) denote the closed
subgroup {g € G| ¢S = S} of G, the largest subgroup of G which induces
an action on S, and we let Z(S) denote the kernel of this induced action, i.e.,
Z(S) = {9 € Gl gs = s, Vs € S} istheintersection of the isotropy
subgroups G, s € S. Thus N (S)/Z(S) isaLiegroup acting effectively on S.
In particular when S isasection ¥ thenwedenote N (X) /Z(X) by W = W ()
and call it the generalized Weyl group of 3.

5.6.13. Remark. If M isthe compact Lie group G with the Adjoint action,
then for asubgroup H of G, N(H) and Z(H ) are respectively the normalizer
and centralizer of H. If for H wetakeamaximal torusT" of G' (whichisinfact
asection of the Adjoint action) then Z(T') = T and W (T') = N(T)/T isthe
usual Weyl group of G.

5.6.14. Remark. Let x be aregular point, S a normal dlice a x, and X
a section at x. As remarked above G, C Z(S) C Z(¥), and conversely
from the definition of Z(X) it follows that Z(X) C G, s0 Z(X) = G,.
Moreover if g3 = 3 then g3 isthe section at the regular point gx. So G, =
Z(X) = Z(gX) = Gy Thenit follows from G4, = gG,g~ ! that we have
N(2) € N(G,) and W(5) € N(G,)/GC.

5.6.15. Proposition.  The generalized Weyl group W () of a section X is
a discrete group. Moreover if ¥’ is a second section for M then W (%) is
isomorphic to W (32) by an isomorphism which is well determined up to inner
automor phism.

ProoOF. Let Y bethe section and S the normal slice at the regular point
x. Then S is an open subset of ¥.. If ¢ € N(X) is near the identity then
gr € S. Since S meets every orbit near = at a unique point, gxr = =z, i.e,
ge G, =27(X),s0Z(X)isopenin N(X) and hence W (%) isdiscrete. If
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isasectionthen Y’ = goX andsog — goggo_l clearly induces an isomorphism
of W(X)onto W (X'). =

5.6.16. Example. The isotropy representation of the symmetric space M =
G/K a eK admits sections. In fact, let G = K + P be the orthogonal de-
composition of the Lie agebra G of GG asin Example 5.4.5 and 2l a maximal
abelian subalgebrain P. Then 2l is a section and the generalized Weyl group
W isthe standard Wey!| group associated to the symmetric space G/ K. These
representations have the following remarkable properties:

(i) Given p € P, the dlice representations of P again admits sections.

(i)A/W ~P/K.

(iii) Chevalley Restriction Theorem ([He],[Wa]): Let R[P]“ be the algebra
of G-invariant polynomialson P, and R[]" the algebra of W -invariant poly-
nomialson 2. Then therestriction map R[P]¢ — R[A]" defined by f +— f|A
is an algebraisomorphism.

Following J. Dadok we shall say that an orthogonal representation spaceis
polar if it admits sections. The following theorem of Dadok [Da] says that the
isotropy representations of symmetric spaces are “essentially” the only polar
representations.

5.6.17. Theorem. Let p : H — O(n) be a polar representation of a
compact connected Lie group. Then there exists an n-dimensional symmetric
space M = G/K and alinear isometry A : R" — T' M, x mapping H-orbits
onto K -orbits.

5.6.18. Corollary. If pisafinitedimensional polar representation, then the
corresponding generalized Weyl group is a classical Weyl group.

5.6.19. Definition. A G-manifold M iscalled polar if the G-action is proper,
Fredholm, isometric, and admits sections.

5.6.20. Remark. The generalized Wey! group of a polar G-manifold isnot a
Weyl groupingenera. Infact wewill now construct exampleswith an arbitrary
finite group as the generalized Weyl group. Given any compact group G, a
closed subgroup H of G, a finite subgroup W of N(H)/H, and a smooth
manifold ¥ such that W acts faithfully on 3, welet 7 : N(H) — N(H)/H
be the natural projection map, and K = 7~ (W), so K acts naturally on X.
Let
M=Gxg¥={(g9,0)|ge G, ocd€X}/ ~,

where the equivalencerelation ~ isdefined by (g, o) ~ (gk~!, ko), and define
the G-action on M by v(g, ) = (vg, o). Now suppose ds? isametric on M
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suchthat ds?|¥ and ds?|v(X) are K -invariant. Then G actson M isometrically
with e x ¥ asasection, (H) asthe principal orbit type, and 1V asthegeneralized
Weyl group.

Note that any finite group W can be embedded as a subgroup of some
SO(n). Thustaking G = SO(n), H = e, and ¥ = S"~! in the the above
construction gives a G-manifold admitting sections and having W as its gen-
eralized Weyl group. This makes it seem unlikely that there can be a good
structure theory for polar actionsin complete generality. Nevertheless, Dadok’s
theorem 5.6.17 gives aclassification for the polar actionson S*, and it would be
interesting to classify the polar actions for other specia classes of Riemannian
manifolds, say for arbitrary symmetric spaces.

Although a general structure theory for polar actions is unlikely, we will
now seethat the special propertiesin Example 5.6.16, for the isotropy represen-
tations of symmetric spaces, continue to hold for all polar actions.

5.6.21. Theorem. If M isapolar G-manifold and p € M, then the dlice
representation at p isalso polar. Infact, if X isa section for M through p then
T3, isasectionand W(X), = {¢p € W(X)| ¢(p) = p} isthe generalized
Weyl group for the slice representation at p.

Proor. LetV = v(Gp), be the space of the slice representation, and
Vo = TX,. Then, by definition of a section, 1} is a linear subspace of V.
Suppose B isasmall ball centered at theoriginin V', S = exp,,(B) isanormal
dicea p, and z = exp,(v) € S. By Corollary 5.1.13, G, C G, for al
x € S. Sotheisotropy subgroup of the linear G,-actionon V' at z is G;.
From this follows the well-known fact that the G,-orbit of « in V' has the same
codimension as the G-orbit of z in M. By Proposition 5.6.12 it suffices to
show that for each u € Vj and £ in the Lie algebra of G, (¢(u),v) = 0 for
al v € V. Let g° be the one parameter subgroup on G, generated by ¢, and
u(t) = exp,(tu). Choosev(t) € TX, ;) suchthatast — 0 v(t) — vinTX.
Since X isasection,

(€(u(t)), v(t))uw) =0, (5.6.1)

where (, ), istheinner product on T'M,, ;). Note that the vector field £ for
the G ,-action on V' is given by

£(v) = lim dg(u)

= lim lim ¢°(u(t))

s—0t—0
= lim lim ¢°(u(?)) = lim £(u(?)).

Lettingt — 0in (5.6.1), we obtain ({(u),v) = 0.
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It remainsto provethat W (Vy) = W(X),. Toseethisnotethat N (1})
NE)NG, and Z(Vy) = Z(X) N G, = Z(X), so W(Vp) C W(X),.
Conversely if gZ(X) € W(X),, then gp = p, which impliesthat W (%), C
W(V). =

5.6.22. Corollary. Let M bea polar G-manifold. If M has a fixed point
then the generalized Weyl group of M isa Weyl group.

5.6.23. Corollary. If M isapolar G-manifold then for any p € M, G, acts
transitively on the set of sections of M that contains p.

Proor. Let3; and X5 besectionsthrough p and let x bearegular point
of 31 near p. We may regard - as a section for the slice representation at p,
so it meets G, i.e, there exists g € G, such that gz € ¥,. Since g>; and
o are both sections of M containing the regular point gz they are equal by
Theorem 5.6.7 (5). =

5.6.24. Corollary. Let M be a polar G-manifold, > a section of M, and
W = W (¥) its generalized Weyl group. Thenfor x € ¥ wehave Gx N'Y =
We.

PrROOF. Itisobviousthat Wz C Gz N X. Conversely suppose z/ =
gxr € X.. ThengXisasectionat z’, soby Corollary 5.6.23 thereisy € G,/ such
that vg¥ = X. Thusvyg € N(X) soz’ = va’ = vygrisin N(X)x = Wa.

For a K-manifold N, welet CO(N)¥ and C°°(N)*X denote the space of
all continuous and smooth K -invariant functions on N. As a consegquence of
Corollary 5.6.24 we seethat if M isapolar G-manifold with 3 asa section and
W asits generalized Weyl group, then the restriction map  from C°(M)¢ to
C°(2)W defined by 7(f) = f|> isanisomorphism. Moreover, it followsfrom
Theorem 5.6.21, Corollary 5.6.18, and atheorem of G. Schwarz [Sh] (if G isa
subgroup of O(n) then every smooth G-invariant function on R™ can be written
as a smooth functions of invariant polynomials) that the Chevalley restriction
theorem can be generalized to smooth invariant functions of a polar action, i.e.,

5.6.25. Theorem [PT2]. Suppose M isapolar G-manifold, X is a section,
and W = W () is its generalized Weyl group. Then the restriction map
C>®(M)E — C>(2)W defined by f — f|% isan isomorphism.
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5.7.  Submanifold geometry of orbits

One important problem in the study of submanifolds of N”(c) isto deter-
mine submanifolds which have smplelocal invariants. The submanifolds with
the simplest invariants are the totally umbillic submanifolds, and these have
been completely classified (see section 2.2). Another interesting class consists
of the compact submanifolds with paralel second fundamental forms. It is not
surprising that the first examples of the latter arise from group theory. Ferus
([Fe]) noted that if M isan orbit of the isotropy representation of a symmetric
space G/K and if M isitself a symmetric space with respect to the metric
induced on it as a submanifold of the Euclidean space T'(G/K).x, then the
second fundamental form of M is parallel with respect to the induced normal
connection (defined in section 2.1). Conversely, Ferus ([Fe]) showed that these
are the only submanifolds of Euclidean spaces (or spheres) whose second fun-
damental formsare paralel. These results might lead one to think that orbits of
isometric action on S™ may not be too difficult to characterize in terms of their
local geometric invariants as submanifolds. But in fact, this turns out to be a
rather complicated problem.

Let N be aRiemannian G-manifold, and M = Gz aprincipal orbit in
N. If visaG-equivariant normal field on M, then by Proposition 5.4.12 (3),
M, = {exp(v(x)) | x € M} isthe G-orbit through 2 = exp,_(v(zo)). The
map M — M, defined by gzo — exp,, (v(gzo)) is afibration. Moreover
every orbit is of the form M, for some equivariant normal field v. So in order
to understand the submanifold geometry of orbits of [V, it suffices to consider
principal orbits.

It follows from Proposition 5.4.12, Corollary 5.4.11 and Theorem 5.6.7
that we have

5.7.1. Theorem. Suppose M is a principal orbit of an isometric polar
G-actionon N. Then

(1) aG-equivariant normal fieldisparallel with respect to theinduced normal
connection,

(2) v(M) isglobally flat,

(3) if v isa parallel normal field on M then the shape operators A, and
Ay (y) areconjugatefor all z,y € M, i.e, theprincipal curvatures of M along
parallel normal field v are constant,

(4) there exists » > 0 such that

U = {exp,(v) |z € M, vev(M)y, [jv]| <r}
isatubular neighborhood of M,

(5) if Sp is the normal dlice at xg, {exp, (v) | v € V(M)a,, |lv] <},
with the induced metric from N, thenthe map = : U4 — Sy, defined by
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m(exp,(v(z)) = exp, (v(zo)) for x € M and v a parallel normal field,
isa Riemannian submersion,

(6) {M,| vis a parallel normal vector field of M }isasingular foliation
of N.

Notethat thelocal invariants (normal and principal curvatures) of principal
orbits of polar actions of NV are quite simple. So, both from the point of view
of submanifold geometry and that of group actions, it is natural to make the
following definition:

5.7.2. Definition. A submanifold M of N is caled isoparametric if (M)
is flat and the principa curvatures along any paralel normal field of M are
constant.

5.7.3. Example. If Nisapolar G-manifold, then the principal G-orbits are
isoparametric in N. In particular the principal orbits of the isotropy repre-
sentation of a symmetric space U/ K are isoparametric in the Euclidean space
T(U/K)er. But unlike the case of totally umbilic submanifolds and sub-
manifolds with parallel second fundamental forms of N?(c), there are many
isoparametric submanifolds of NP (c¢) which are not orbits. These submani-
folds are far from being classified, but there is arich theory for such manifolds
(for example properties (4-6) of Theorem 5.7.1 hold for these submanifolds),
and thiswill be developed in the later chapters.

Next we will discuss the submanifold geometry of a general Riemannian
G-manifold. It again follows from previous discussions that we have

5.7.4. Theorem. Suppose M isaprincipal orbit of anisometric G-manifold
N. Then

(1) there exist a tubular neighborhood U of M, a Riemannian manifold B
and a Riemannian submersion 7 : U — B having M as a fiber,

(2) ifvisam-parallel normal field on M then the shape operators A, ;) and
A, (y) areconjugatefor all z,y € M, i.e, theprincipal curvatures of M along
a m-parallel normal field v are constant,

(3) ifvisam-parallel normal fieldon M then M, isan embedded submanifold
of N andthemap M — M, defined by x — exp,(v(x)) isafibration,

(4) {M,]| vis a m—parallel normal vector field of M } isthe orbit folia-
tionon N given by G.

This leads us to make the following definition:

5.7.5. Definition. An embedded submanifold M of NV isorbit-like if
(i) there exist atubular neighborhood U of M in N, a Riemannian manifold
B and a Riemannian submersion 7 : U — B having M as afiber,
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(i) if v isam-parallel normal field on the fiber M, = 7=1(b) then the shape
operators A, () and A, of M, are conjugate for al z,y € M,, i.e, the
principal curvatures of M, along parallel normal field v are constant.

Then the following are some natural questions and problems:

(1) Let M beanorbit-like submanifold of N?(c¢), and supposeits Riemannian
submersion 7 isdefined on U = NP(c). Isthereasubgroup G of 1so(N?(c))
such that all G-orbits are principal and 7 is the orbit map?

(2) Do conditions (3) and (4) of Theorem 5.7.4 hold for orbit-like submani-
folds? If ||v|| issmall then it follows from Definition 5.7.5 that (3) and (4) are
true. But it isunknown for large v.

(3) Suppose M™ is a submanifold of N™*+*(c) with a global normal frame
field {e, } such that the principal curvatures of M aong e, are constant. Are
there a “good” necessary and sufficient condition on M that guarantee M is
orbit-like.

(4) Develop atheory of isoparametric submanifolds of symmetric spaces.

5.8. Infinitedimensional examples

First we review and set some terminology for manifolds of maps. Let M
be a compact Riemannian n-manifold. Then for al k&

(S ESd

u, v)dz

(1, 0) = /M<<I+A>

defines an inner product on the space C'>° (M, R™) of smooth maps from M
to R™, where dz is the volume element of M and (,) is the standard inner
product on R™. Let H*(M,R™) denote the completion of C>°(M, R™) with
respect to the inner product ( , ). It follows from the Sobolev embedding
theorem [GT] that if k > 2 then H*(M,R™) is contained in C°(M™,R™)
and the inclusion map is compact. Let N be a complete Riemannian manifold
isometrically embedded in the Euclidean space R™. If k > 5 then

HY(M,N) = {u € H*(M,R™) | u(M) C N}

isaHilbert manifold (for detailssee[Pag]). Inparticular, H* (S, N) isaHilbert
manifold if & > 1.

Let G be a simple compact connected Lie group, 7" a maximal torus of
G, G, T the corresponding Lie algebras, and b the Killing form on G. Then
(u,v) = —b(u,v) defines an inner product on G. Let ¢ denote the trivial
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principal G-bundieon S'. ThentheHilbert group G = H!(S', G) isthegauge
group, and the Hilbert space V' = H?(S!, G) is the space of H°-connections
of £. The group G actsonV by the gauge transformations:

g-u=gug ' +gg "

5.8.1. Theorem. Let G be a compact Lie group, 7" a maximal torus of
G, and G, T the corresponding Lie algebras. Let G = H'(S',G) act on
V =H"(S"G) by
g-u=gugt+g'g7".

Then this G-action is isometric, proper, Fredholm, and admits section. In fact,
7 = the set of constant maps in V' with value in 7, is a section, and the
associate generalized Weyl group W (7') is the affine Weyl group W x A,
where A = {t € 7 | exp(t) = e} and

(wl,)\l) . (wg,)\z) = (wlwg,)\g + wg()\l))

PrOOF. SincetheKillingformon G is Ad(G) invariant, the G-action is
isometric (by affine isometries). To seethat it is proper, suppose g,, - u, — v
and u,, — u. Since G iscompact, g, - u — v, i.e, ghug, ! + g g1 — v,
whichimpliesthat ||u,, + g, *¢’,||o isbounded. So ||g;; 1 ¢/, | isbounded. Since
G is compact, || g, |lo is bounded. Hence ||g,||1 is bounded. It follows from
the Sobelov embedding theorem and Rellich’s lemma that the inclusion map
H'(S', G) — C°(S', G) isacompact operator, so there exists a subsequence
(still denoted by g,,) converging to go in H°(S', G). But

lgnugn* + gngn " — vllo = lgnu + g, — vgnllo — O,

S0 g, — go IN HY(SY, G).
The differential P of theorbitmap g — gz ateis

P:HY(S'G) — HYS,G), ur— v + [u,z],

whichiséliptic. Soit follows form the standard €elliptic theory [GT] that P is
Fredholm. This provesthat the G-action is Fredholm.

Next we show that 7 meets every G-orbit. Let & : H(S',G) — G
be the holonomy map, i.e.,, given v € H°(S',G), let f : R — G bethe
unique solution for f/f~! = w and f(0) = e, then ®(u) = f(27). Given
u € HO(S', G), by themaximal torustheoremthereexist s € Ganda € 7 such
that s®(u)s~! = exp(2ma). Let a denote the constant map a(t) = a. Then
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i € G- u. Toseethis, let h(t) = exp(ta)sf~1(t), then h(0) = h(2r) = s,
ie,h € HY(S',G)and h - u = a.

It remains to prove that T is orthogonal to every G-orbit. Givent € 7,
welett € HO(S', G) denote the constant map with valuet. Let o € 7. Then

T(é ’ %0>%0 = {’Ul + [1},1@0” CIS Hl(Slag)}

Givenany i € T, we have
(0 + o, Fol)o = / (£,0/(8) + [0(0), to]) d6
Sl

:/ (t,v’(@))d0+/ (t, [v(6), to]) dO .
Sl

Sl

_0+ /Sl([to,t],v(@)) d9 = 0

So7 isasection. =

There is little known about the classification of polar actions on Hilbert
spaces.



Chapter 6

| soparametric Submanifolds

In section 5.7, we defined a submanifold of a space form to be isoparamet-
ricif itsnormal bundleisflat and if the principal curvatures along any paralel
normal vector field are constant (Definition 5.7.2). These submanifolds arise
naturally in representation theory for, as we saw, an orbit of an orthogonal
representation isisoparametric if and only if itisaprincipal orbit of apolar rep-
resentations, so in particular principal coadjoint orbits are isoparametric. And
because their local invariants are so simple,isoparametric manifolds are aso
natural models to use in the classification theory of submanifolds. Although
the principal orbits of a polar action are isoparametric, not all isoparametric
submanifolds in R™ and S™ are orbits. Nevertheless, as we will see in this
chapter, every isoparametric submanifold of R™ or S™ has associated to it a
singular, orbit-likefoliation, and thisfoliation has many of the same remarkable
properties of the orbit foliations of polar actions. Thus isoparametric subman-
ifolds can be viewed as a geometric generalization of principal orbits of polar
actions.

There is an interesting history of this subject, which explains the origin of
thename"“isoparametric” . A hypersurfaceisalwaysgivenlocally asthelevel set
of some smooth function f, andthen |V f||2, A f are called thefirst and second
differential parametersof the hypersurface. Soitisnatural to makethefollowing
definition: a smooth function f : R"™! — Riscalled isoparametricif ||V f||2
and A f are functions of f. The family of the level hypersurfaces of f isthen
called an isoparametric family, since clearly the first and second differential
parameters are constant on each hypersurface of the family. It is not difficult
to show that an isoparametric family in R™ must be either parallel hyperplanes,
concentric spheres, or concentric spherical cylinders. Thiswas proved by L evi-
Civita[Lc] forn = 2, andby B. Segré[Se] for arbitrary n. Shortly after thiswork
of Levi-Civita and Segré, E. Cartan ([Ca3]-[Ca5]) considered isoparametric
functions f on space forms, and discovered many interesting examples for
S**t1. Among other things Cartan showed that the level hypersurfaces of f
have constant principal curvatures. And conversely, he showed that if M is
a hypersurface of N™*1(c) with constant principal curvatures, then there is
at least alocal isoparametric function having M as alevel set. Cartan called
such hypersurfacesisoparametric. Inthe past dozen years, many people carried
forward this research. Around mid 1970's, Minzner [M11,2] completed a
beautiful structure theory of isoparametric hypersurfaces in spheres, reducing
their classification to a difficult, but purely algebraic problem. Although many
people have subsequently made significant contributions to this classification
problem, including Abresch [Ab], Ferus, Karcher, Minzner [FKM], Ozeki and
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Takeuchi [OT1,2], itisstill far from being completely solved. There have also
been applications of isoparametric hypersurface theory to harmonic maps [E€]
and minimal hypersurfaces ([No],[FK]). Recently, with the purpose in mind
of constructing harmonic maps, E€lls [Ee] gave a definition of isoparametric
map that generalizes the concept of isoparametric function. Carter and West
[CW2] also gave adefinition of isoparametric maps S* % — R*: their purpose
being to generalize Cartan’swork to higher codimension. Using their definition,
they showed that the regular level of an isoparametric map is an isoparametric
submanifold. They also showed that there is a Coxeter group associated to
each codimension two isoparametric submanifold of a sphere, but they did not
obtain asimilar result for higher codimension. Thiswork led Terng [Te2] to the
definition used in this section.

6.1. Isoparametric maps

6.1.1. Definition. A smoothmap f = (fui1s-- ., fasr) : N*TF(c) — RF
is called isoparametric if

(1) f hasaregular value,

(2) (V fa, Vfs) and A f, arefunctionsof f for al «, 3,

(3) [V fa, Vfz]isalinear combination of V f,, 11, ...,V fn1k, with coeffi-
cients being functions of f, for all « and .

This definition agreeswith Cartan’'swhen k£ = 1. In the following we will
proceed to prove that regular level submanifolds of an isoparametric map are
iSoparametric.

Hereafter we will use the notation introduced in Chapter 2. Suppose f :
N"tk(c) — RF is isoparametric. Applying the Gram-Schmidt process to

{V fo } wemay assumethat at any regular point of f, thereisalocal orthonormal
framefield ey, ..., e, With dua coframews, ..., w,+x such that

dfoa = capwp, (6.1.1)
B

with rank(c,3) = k, and where the ¢, g are functions of f. So
dcas =0 mod (Wpi1, .-\ Wntk)- (6.1.2)
It is obvious that w, = 0 defines the level submanifolds of f. Condition (3)

implies that the normal distribution defined by w; = 0 on the set of regular
points of f iscompletely integrable.
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6.1.2. Proposition. Let f : N***(¢) — R¥ beisoparametric, b = f(q) a
regular value, M = f~1(b), and F the leaf of the normal distribution through
q. Then

() F istotally geodesic,

(ii) v(M) isflat and has trivial holonomy group.

Proor. Takethe exterior differential of (6.1.1), and using the structure
equations, we obtain

Z dcag Nwg + Z Capwpgi N\ wi + Z Capwpy N wy = 0. (6.1.3)
B Bi By
From (6.1.2), since the coefficient of w; A w, in (6.1.3) is zero, we obtain
> cap(—wpiley) +wpy(ei)) =0. (6.1.4)
B

But rank(c.3) = k, hence:

wai(ey) = wpy(€:).
From condition (3) of Definition 6.1.1, we have
lea,es] = Zuagfye,y = Ve.e8 — Veyea
Y
=D (wpilea) = wailep))ei + ) (wpr(€a) = wan(ep))ey-
i v

Hence
Wi (€a) = Wai (65),

wgy(€a) — Way(€s) = Uapy,
where u, g~ isafunction of f. In particular, we have
wﬂa(ea) = UaBas
isafunction of f. Using (6.1.4), we have
wgi(ea) = wga(€i)
= waz‘(eﬁ> = waﬁ(ei) - _wﬁa(ei)‘

S0 waegs(e;) = 0and wyi(eg) = 0,i.e, wap = 00n M, and w,; = 0 on F.
This implies that the e, are parallel normal fields on M and that F is totally
geodesic.
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Notethat e, on M can be obtained by applying the Gram-Schmidt process
toVfit1,.-., Vfnik, SO e, isaglobal paralel norma frame on M, hence
the holonomy of v(A/) istrivial. =

6.1.3. Corollary. With the same assumption asin Proposition 6.1.2,

(i) Vfo|M isaparallel normal fieldon M foralln +1 < a < n+k,

(i) if v isa parallel normal field on M, then there exists t, > 0 such that
{exp,(tv(z))| x € M} isaregular level submanifold of f for |¢| < t.

In order to prove that a regular level submanifold of an isoparametric
map is isoparametric we need the following simple and direct generalization of
Theorem 3.4.2 on Bonnet transformations.

6.1.4. Proposition.  Suppose X : M™ — N"*tk(c) is an isometric im-
mersion with flat normal bundle, and v is a unit parallel normal field. Then
X* =aX +bvisanimmersionifandonlyif (al —bA,) isnon-degenerate on
M. Here A, isthe shape operator of M inthedirection v, and (a,b) = (1,t)
for ¢ = 0, is (cost,sint) for ¢ = 1, and is (cosht,sinht) for ¢ = —1.
Moreover:

(i) v(M™) isflat,

(i) TMy =TMy.,v(M), = v(M*),-, where ¢ = X*(q),

(ii)) v* = —cbX + av isa parallel normal field on M*,

(iv) A% = (cbl + aAy)(al —bA,)™ L.

Proor. Wewill proveonly thecasec = 0, the other casesbeing similar.

Let e 4 be an adapted frame on M. Taking the differential of X* we obtain

dX* =1 —tA, + t(V"0).

Since v is pardlel, we have dX* = I — tA,. Hence X* isan immersion if
andonlyif (I —tA,) isinvertible. So e 4 isaso an adapted frame for M *, and
the dual coframeisw; = Zj(ézj —t(Ay)ij)w;. Moreover, w}, = w;,, SOWe
have A%. = A,(I —tA,)"!.

6.1.5. Proposition. With the same assumptions asin Proposition 6.1.2:
(i) the mean curvature vector of M isparallel,
(i) the principal curvaturesof M along a parallel normal field are constant.

Proor. We choose a local orthonormal frame e 4 as in the proof of
Proposition 6.1.2. Let

d(foc) = Z(fa)AWA7

A



6. | soparametric Submanifolds 109

v2foz = Z(f()é)AB wa Qwp.

AB
Using (6.1.1) we have

(foz)i =0, (foc)ﬁ = Cag-
Now (1.3.6) gives

(fa)ii ==Y caphipi,

B

(fa)ss = deap(es) + Y carwyples),
vy

S0 we have

Afo = Z deap(es) — Z CapHp + Z Carywrp(es),
38 38 By

where Hg = ) . hig, is the mean curvature of level submanifolds of f in the
directionof eg. Since A fo, cap andwys(eg) aredl functionsof £, > 5 capHp
isafunction of f. However rank(c,g) = k, and hence the H,, are functions
of f,i.e, each H, sisconstant on M. But the e, are paralel normal fieldson
M, o (i) is proved.

To prove (ii) we use the method used by Nomizu [No] in codimension one.
Let X be the position function of A/ in R***. By Corollary 6.1.3, there exists
to > O suchthat X* = X + te, isanimmersionif |t| < to, and X*(M) isa
regular level of f. Then, by (i), the mean curvature H} of X™ inthe direction
of e = e, isconstant. Using Proposition 6.1.4 (iv) and the identity:

AT —tA) =AY tmA™ =) A,
m=0 m=0
we have -
Hp = (tr(A7)em, (6.1.5)
m=0

Note that H isindependent of x € M, so the right hand side of (6.1.5) isa
function of ¢ alone. Hencetr(A"**) isafunction of ¢ for all m and thisimplies
that the eigenvalues of A, areconstanton M. =

As a consegquence of Propositions 6.1.2 and 6.1.5, we have

6.1.6. Theorem. Let f : N"t¥(¢) — R¥ be isoparametric, b a regular
value, and M = f~1(b). Then M isisoparametric.
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6.2. Curvaturedistributions

In this section we assume that M™ isan immersed i soparametric subman-
ifold of R" ™. Since (M) isflat, by Proposition2.1.2, {A,| v € v(M),} isa
family of commuting self-adjoint operators on 7'M, so there exists acommon
eigendecomposition T'M, = @"_, Ei(q). Let {e,} be alocal orthonormal
parallel normal frame. By definition of isoparametric, A, (,) and A, (,) have
same eigenvalues. So E;’s are smooth distributionsand TM = & E;. The
FE;’s are characterized by the equation

Aea |E1 = niaidEia

together with the conditionsthat if 7 # j thenthereexists ap Withnia, # 7jay-
Note that the F;(q) are the common eigenspaces of al the shape operators at
q, So they are independent of the choice of the e, and are uniquely determined
up to a permutations of their indices. These distributions E; are called the
curvature distributions of M .

We will make the following standing assumptions:
(1) M hasp curvature distributions E1, . . ., E,, and m; = rank(E;).
(2) Let {e;} be alocal orthonormal tangent frame for M such that E; is
spanned by {e;|p;1 < j < pi}, where yi; = 3'_, m,. Sowe have

Wapg = 0, (6.2.1)
Wi = Aiawiy (622)

where \;, are constant. Infact, \;, = njq if pj—1 <7 < pj.
(3) Letv; = > nineq. Then

AU|EZ = <U,U¢>Z'dEi, (623)

for any normal field v. Clearly (6.2.3) characterizes the v;, so in particular v;
is independent of the choice of e, i.e., each v; is awell-defined normal field
associated to ;. Infact, if e,, isanother local parallel normal frame on M and
niq the eigenvalues of Az then

V; = Zﬁiaéa = Zniaeia-
(6% (e
We call v; the curvature normal of M associated to F;.
(4) Let ng = (Nint1,- - - Nintk)-

If M isisoparametric in R*T* then M is also isoparametric in R*+++1,
To avoid this redundancy, we make the following definition:
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6.2.1. Definition. A submanifold M of R™% isfull if M isnot included in
any affine hyperplane of R" 1%,

6.2.2. Definition. Animmersed, full, isoparametric submanifold A/™ of R*+*
is called arank k isoparametric submanifold in R™ 1.

6.2.3. Proposition. Animmersed isoparametric submanifold /™ of R**¥ is
full if and only if the curvature normals vy, . .., v, spansv(M). In particular,
if M™ isfull and isoparametricin R"™* then k < n.

Proor. Notethat vq,...,v, span v(M) if and only if the rank of the
k x pmatrix N = (n;s) isk. Suppose M is contained in a hyperplane normal
to a constant unit vector u, € R"*. Then we can choose €nt1 = Ug, O
nin+1 = 0 foral ¢, and rank(N) < k. Conversely, if rank(N) < k then there
exists a unit vector ¢ = (c,) € R¥ such that (¢, n;) = 0foral 1 < i < p.
Weclamthat v = ) cqeq isaconstant vector b in R"t*. To see this, we
note that the eigenvalues of A, are (v,v;) = (¢,n;) = 0,i.e, A, = 0. But
dv = —A,, sov isconstant on M. Then it follows that

d((X,b)) = (dX,b) sz (ei, b) = 0.

Hence (X, b) = ¢y aconstant, i.e.,, M iscontained in ahyperplane. =

Recall that the endpoint map Y : v(M) — R"** isdefined by Y (v) =
x4+ vforv € v(M),. Using theframe e 4, we can write

Y=Y(xz2) =+ Zzaea(l’)

The differential of Y is

dY =dX + Z Zadeo + Z dza€q

p
Z 1 —(z,n;))idg, +Zdzaea

Now recall also that a point y of R"** is called afocal point of M if it isa
singular value of Y, that isif it is of theform y = Y (v) where dY,, has rank
lessthann + k. Theset I" of al focal points of M iscalled the focal set of M

6.2.4. Proposition. Let M beanimmersedisoparametricsubmanifold M ™ of
R™T* and T itsfocal set. For eachq € M letT", denotetheintersection of T with
thenormal planeq+v (M), to M atq. ThenT', istheunion of thel',, and each
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', istheunion of the p hyperplanes?;(q) = {¢+v|v € v(M)y, (v,v;) =1}
ing+v(M),. These?;(q) are called the focal hyperplane associated to E; at
q.

6.2.5. Corallary.

(1) The curvature normal v;(q) is normal to the focal hyperplane ¢;(q) in
q+v(M),g.

(2) Thedistance d(q, ¢;(q)) fromg to ¢;(q) is1/||v;]|.

6.2.6. Proposition. Let X : M™ — R""* be an immersed isoparametric
submanifold, and v a parallel normal field. Then X + v isanimmersionif and
only if (v;,v) # 1 forall 1 <14 < p. Moreover,

(i) the parallel set M, defined by v, i.e.,, theimage of X + v, isan immersed
isoparametric submanifold,

(i) let ¢* = g+ v(q), then TM, = T(M,)g+, v(M)y = v(M,)q+, and
q+v(M)g=q" +v(M)g

(iii) if {e,} isalocal parallel normal frame on M then {e,} is a local
parallel normal frame on M, wheree, (¢*) = e (q),

(iv) EX(q¢*) = E;(q) arethe curvature distributions of M, and the corre-
sponding curvature normals are given by

v (q") = vi(g)/(1 = (v, v3)),

(v) the focal hyperplane ¢;(¢*) of M, associated to E is the same as the
focal hyperplane ¢;(q) of M associated to ;.

Proor. Since v is paradld, there exist constants z, such that v =
> o Zaa. Thedifferential of X + vis

d(X +v)=dX + Z Zadeqy
= Zwiei - Z RaWiati
= Z(l — Z za)\m)wiei.
So we may choose the following local frame on M,,:

ey =ea, w, =(1- E ZaNia )Wi-
[0
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Then w? 5 = (de’y, e}3) = wap. In particular, we have
w:;ﬁ = 0,

Wiy = AiaWi = w;
(40 2ad’ 1_262/8)\16 7

1

which proves the proposition. =

Next wewill prove that the curvature distributions are integrable. First we
need some formulas for the Levi-Civitaconnection of M intermsof E;. Using
(6.2.1), (6.2.2) and the structure equations, we have

dwm = d()\iawi) = )\mdwi = )\ia Zwij A wj

J
= E wij A wja = E )\jawij N w]',
J J

Z()\Z‘a - )\ja)wij AN w; = 0.

J

Suppose w;; = > . YijmWwWm, then we have

Z()\ia — Nja)Vigmwm A wj = 0.

i.m
Thisimplies that
6.2.7. Proposition. Letw;; =)  VijmWm. Then
(Aia - )\ja)%'jm = ()\ioz - )\moz)%mja if 7 # m.
Inparticular, if e;, e,, € E;,, e; € Fy,, and iy # 4o, then v;;,, = 0.
6.2.8. Theorem. Let M™ be an immersed isoparametric submanifold of
R™*+*. Then each curvature distribution E; isintegrable.

Proor. For smplicity, weassume: = 1 and m = my. F; isdefined
by the following 1-form equations on M :

w; =0, m<i<n.
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Using the structure equation, we have

m m
dwi:Zwij /\wj = Z %-jsws/\wj.
]:1 j,S:].
Sincew;; = —wji, Vijs = —7jis» Whichiszero by Proposition 6.2.7. So F; is

integrable. =

6.2.9. Theorem. Let M™ bea complete, immersed, isoparametric subman-
ifold of R"**, E; the curvature distributions, v; the corresponding curvature
normals, and /;(q) the focal hyperplane associated to F; at ¢ € M. Let S;(q)
denote the leaf of F; through q.
(1) If v; # 0 then
(i) Ei(x) @ Ru;(z) isafixed (m; + 1)-plane&; inR™* for all = € S;(q),
(i) z + (vi(2)/|lvi(z)]|?) isa congtant ¢y € &; for all = € S;(q),
(iii) S;(q) isthe standard sphere of ¢y + &; with radius 1 /||v; || and center
at cg,
(iv) E;(z) ©v (M), isafixed (m; +k)-planen; inR"* for all = € S;(q),
(V) 4;(x) = £;(q) for all x € S;(q), which isthe (k — 1)-plane perpen-
dicular to co + &; inco + n; at co,
(vi) giveny € ¢;(q) wehave ||x — y|| = ||q — y|| for all z € S;(q).
(2) If v; = 0 then E;(x) = E;(q) isafixed m;-planefor all z € S;(¢q) and
Si(q) isthe plane parallel to F;(q) passes through g.

Proor. Itsufficestoprovethistheoremfor £;. Letm = my. Toobtain
(1), we compute the differential of themap f = e; A ... Ae, Avg from Sy (q)
to the Grassman manifold Gr(m + 1,n + k). Since

e1N...Ney, ANdop =0
on S1(q), we have
dles Noo.Nep Avp) =

Zel/\.../\(z wijej—FZwmea)/\eiH/\.../\em/\vl.
i<m j>m «@
Using Proposition 6.2.7, we have w;; = > ., 7Vijsws = 0if ¢ < m and
j > m. Sowe have B
df = Z e1N ... NWigaq Ne€ir1 A... Nem Ay
i<m,x
= Z e1N... Anjgwieq N €1 A ... Nepym ANigeg

Z§m7a7/6

= g NiaNigwie1 A...eq AN€iy1...em ANeg =0,
1<m,a,B
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which proves (1)(i). Similarly one can prove (1)(iv) by showing that
dlegs N...ANepm Aeps1... Nepag) =0

on S1(q). Next we calculate the differential of X + (v1/[|v1]]?) on S1(q):

U1 1
d X—i——):Id - — A, |E;.
( 012 By or e

Since A, | E; = (v, v;)idg,, (1)(ii) follows, and (1)(iii) isadirect consequence.
Note that v1(x) is norma to ¢1(x) in ¢y + &1, o it follows from (1)(i) and
(L)(iv) that ¢; (x) is perpendicular to co + &1 incy + 1y @ co foradl x € S1(q).
Hence (1)(v) and (vi) follow.

If v1 = 0 then w;, = 0 for i < m. By Proposition 6.2.7, w;; = 0 on
Si(q)ifi <mandj >m. Sod(e; A...Aep)=00nSi(q), which proves
(2. =

Because an m-plane is not compact, we have
6.2.10. Coroallary. If M™ is a compact, immersed, full isoparametric

submanifold of R"““, then all the curvature normals of M are non-zero.

6.2.11. Proposition. Letw;; =) . 7Yijmwm. Then
(i) ()‘ioz - Aja)%‘jm = hz’ozjmv
(ll) if e; € Ez'l, e; € Eig and 21 # 19, then Yiji = 0.

Proor. Using (2.1.19), we obtain
0= Z hjozjmwmv

()\m - )\ja)wz’j = Z hmjmwm- u

6.3. Coxeter groups associated to isoparametric submanifolds

In this section we assume that X : M™ — R"* is an immersed full
isoparametric submanifold. Let Ey, E1, ..., E, bethe curvature distributions,
v; the corresponding curvature normals, and /;(q) the focal hyperplanein ¢ +
v(M), associated to E;. We may assume vy = 0, sov; # 0 forall i > 0. We
will use the following standing notations:
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D vy =q+v(M),.
(2) R} denotesthe reflection of v, across the hyperplane ¢;(q).
(3) 7! denotes the linear reflection of v(M), aong v;(q), i.e.,

(3) Let ¢; be the diffeomorphism of M defined by ;(¢q) = the antipodal
point of ¢ in the leaf sphere S;(q) of E; for i > 0. Note that ¢? isclearly the
identity map of M; we call it the involution associated to F;.

(4) S, will denote the group of permutationsof {1,...,p}.

It follows from (1) of Theorem 6.2.9 that

Vj
i =X +2—,
Z lvil[?

vi(q) = Ri(q).
Since ; isadiffeomorphism it follows from Proposition 6.2.6 that:

6.3.1. Proposition. Ifv; # 0then1 — 2({v;,v;)/||v:||?) never vanishes for
0<j=<p.

6.3.2. Theorem. Thereexist permutationsoy, ..., o0, in.S, such that
(D) Ej(ei(q) = Ebyjy(@), 1€, ¢f (E;) = Eq,;), in particular we have
My = Moy (5)

(2) Vo, ()(a) = (1 -2 Eﬁﬁﬁﬁéﬁz)iﬁ(ga(q)),

(0ivg, )\ !
@ T (v5(a) = (1-2 5520 v0,(0).

PrOOF. It sufficesto prove the theorem for £/;. Notethat o1 = X + v
and M, = @1 (M) = M,wherev = 2v;/||vy||? isparallel. So by Proposition
6.2.6 (iv), thereexists o € S, such that (1) istrue.

By Proposition 6.2.6 (iii), €, () = eq(¢1(x)) gives a paralel normal
frameon M. So the two parallel normal framese,, and e, differ by a constant
matrix C'in O(k). To determine C, we paralél trandlate e, (¢) with respect to
the induced normal connection of M in R*** to ¢* = ¢1(q). Let &1, 11, co be
asin Theorem 6.2.9. Then the leaf S;(q) of E at q is the standard sphere in
the (m + 1)-plane ¢y + &1, whichiscontained in the (m; + k)-plane co + 1,
and e,|S1(q) isaparalel normal frame of S1(q) in ¢y + 1. In particular, the
normal paralel translation of e, (q) to ¢* on S1(q) in ¢y + 1 isthe same as
the normal parallel trandation on M in R™**. Note that the normal planes of
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S1(q) at gand ¢* incy + n; arethe same. Let 7 denote the parallel translation
inthe normal bundle of S1(q) inco + 1 from g to g*. Thenitiseasy to see that

m(v1(q)) = —v1(q) and 7(u) = w if uw isanormal vector at ¢ perpendicular to
v1(q), i.e, wisthelinear reflection R of v(M), aong v1(q). So

ealq”) = T (ealq)) = T (ealq”)).

Since (T})~! = T4,

6(q”) = T ealq")) = calq") — 2

oz @
But v1(¢*) = —v1(q), so we have
S B <€Oz7vl>v1
c [[v1]]2 6.3.1
> (Gap pRALLLEC P (031
s “ 721 |2

Let \io and )\, be the eigenvalues of A, and Az on E; respectively. Then
(6.3.1) implies that

S\ia _ Z((Saﬁ B 2711&”15 )Azﬁ

2
- ]

We have proved that E;(q*) = E,(;)(q), 0 using Proposition 6.2.6 (iv) we
have

)\O'( )
1 — gfrem)”

l[vll?

N = (6.3.2)

Note that
vi(p1(q)) = T (vi(q)), since v; is parallel
V1, V;
= (v; — 2“7%1)(61)

[0 ]2

= Z Nia€a(#1(0) = Y _ Mia€a(q), by (6.3.2)
= Z "i?f;m ealq),

l[vall?
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As a consegquence of Theorem 6.3.2 (3) and Corollary 5.3.7, we have

6.3.3. Corollary.  The subgroup W of O(v(M),) generated by the linear
reflections 77, . . ., T,7 is a finite Coxeter group.

From the fact that the curvature normals are parallel we have:

6.34. Propostion.  Letm,, : v(M), — v(M), denote the parallel

trandation map. Then , ,» conjugates the group W7 to W4 In particular,
we have associated to M a well-defined Coxeter group V.

6.35. Theorem. R¥(;(q)) = £y, ;) (q).

Proor. It suffices to prove the theorem for ¢ = 1,5 = 2. We may
assumethat o1 (2) = 3. Inour proof ¢ isafixed point of M, sowewill drop the
reference to ¢ whenever there is no possibility of confusion. Let ¢ = Ry (/).
Since v; is normal to /;, it follows from Theorem 6.3.2(3) that ¢ is paralel
to /5. Choose ¢’ € (3 and Q € ¢ suchthat ||¢ — ¢'|| = d(q,¢3) = ¢ and
lg = QI = d(g, ) respectively. Let 1/a = [jvi]| and 1/b = |jvz]. By
Theorem 6.2.9, g’ = v3/||v3]|?. Note that 6.3.2(3) gives

T1(vs) = (1 _ gl vs) ) - V3. (6.3.3)

We claim that ¢’ — ¢0, whichwill provethat £ = /. It iseasily seen that ¢¢
and qu are parallel. We divide the proof of the claim into four cases:

(Casei) ¢y || ¢2 and vy, vo areinthe opposition directions.

O L1 L,

Let n be the unit direction of vo. Then q‘@ = —(2a + b)n. Note that vs
isequal to (e/c)n fore =1 or —1. Using (6.3.3), we have

1 1
Tl(’Uz) = Tl (571) = —ETL
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S0 €
—~1/b = —(1+ 2ae/c)™ . (6.3.4)
C
If ¢ = 1 then the right hand side of (6.3.4) is positive, a contradiction. So
e = —1. Then (6.3.4) implies ¢ = 2a + b, which proves the claim.

(Caseii) {1 N £y # 0, and (vy, vs) < 0.

0 isthe angle between
Cgand CQ

Note that <T1(U2),"U1> = <’l}2,T1("01)> = <1}2, —1)1> > (0 and Tl(Ug) and
q() are in the same direction. We claim that v3 and T3 (v2) are in the same
direction. If not then it follows from (77 (v2),v1) > 0 that (vs,v1) < 0. By
(6.3.3), 71 (v2) and v3 arein the same direction, a contradiction. So (v, v3) >
0. Let 6 denote the angle between v, and v3, which is also the angle between
vy and 17 (ve). Let ||vs|| = 1/¢; computing the length of both sides of (6.3.3)
gives

1
~(1—2acosf/c)!,
c

1/b =

i.e., c =b+ 2acosf. Let a and v be the angles shown in the diagram. Then

q@ = rsin(f + «)
= r(sin(f — a) + 2 cos A sin )
= b+ 2a cos¥b.

This proves q‘@ = q—q’>.



120 Part | Submanifold Theory

The proofs of the claim for the following two cases are similar to those for
() and (ii) respectively and are left to the reader.
(iii) 41 || 2 and vy, vy arein the same direction.
(IV) El ﬂgg 7£ (Z),and <Ul,U2> > 0. ]

As a consequence of Corollary 5.3.7, we have:

6.3.6. Corollary. If M isarank k isoparametric submanifold of R"**,
then:

(i) the subgroup of isometriesof v, = ¢+ (M ), generated by thereflections
R in the focal hyperplanes ¢;(q) is a finite rank k£ Coxeter group, which is
isomor phic to the Coxeter group W associated to M,

(ii) N{¢i(q)|1 <4 < p} consists of one point.

Let A, bethe connected component of v, — ({¢;|1 < ¢ < p} containing
q. Then the closure A, isasimplicial cone and a fundamental domain of W
and {v;| ¢;(q) contains a (k — 1) — simplex of A} isasimple root system
for W. If o € W and ¢(¢;) = ¢; then by Theorem 6.3.2 we have m; = m;.
So we have

6.3.7. Corollary. W associate to each rank & isoparametric submanifold
M" of R*** a well-defined marked Dynkin diagram with & vertices, namely
the Dynkin diagram of the associated Coxeter group with multiplicities m;.

6.3.8. Examples. Let GG beacompact, rank £ ssimpleLiegroup, and G itsLie
algebrawith inner product ( , ), where —( , ) istheKilling formof G. Let 7
be amaximal abelian subalgebraof G, a € 7 aregular point, and M = Ga the
principal orbit through a. Since this orthogonal action ispolar (7 isasection),
M isisoparametric in G of codimension k. Note that

TM, = {[¢,z]| € € G},
V(M)gag— = gTg™"
Givenb € T, b(gag™ 1) = gbg~! isawell-defined normal field on M. Since
dba([€, a]) = [5 b] an
(€, 0], 1) = (=[b, €], 1) = (& [b,T]) = (€,0) =0
foralt e v(M),, Elsparallel and the shape operator is
A (€, a]) = (&, ). (6.3.5)

To obtain the common eigendecompositions of {A4; }, werecall that if A isa
set of positive roots of G then there exist =, vy, in G for each o € A™ such
that

G=T ®{Rzo ® Ry,| o € AT},
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t,za] = a(t)ya, [t yal = —a(t)za, (6.3.6)
where a(t) = (o, t),and t € 7. Using (6.3.5) and (6.3.6), we have

Ab(xa) = _%mm Ab(ya) = _%ya-

This implies that the curvature distributions of M aregivenby £, = Rz, ®
Ry, for « € AT and the curvature normalsare given by v, = —a/{«, a). So

the Coxeter group associated to M as an isoparametric submanifold isthe Weyl
group of G, and all the multiplicities are equal to 2.

If v € v(M),, then g+ v € ¢;(q) if and only if (v,v;) = 1, soasa
consequence of Corollary 6.3.6 (ii), we have:

6.3.9. Corollary. If M™ isarank k isoparametric submanifold of R **,
then there exists a € R* suchthat (a,n;) = 1forall 1 <i < p.

6.3.10. Corallary. Suppose X : M"™ — R""*isarank k immersed
isoparametric submanifold and all the curvature normals are non-zero. Then
there exist vectors a € R* and ¢y € R"** such that M is contained in the
sphere of radius ||a|| centered at ¢y in R"™* so that

X + Zaaea = ¢p.

In particular, we have

(@)l g€ M, 1 <i <p}={c}.

Proor. By Corollary 6.3.9, there exists a € R* such that (a,n;) = 1.
We claim that themap X + >  aqe, isaconstant vector ¢y € R™t* on M,

because
p

d <X + Z%ﬁa) = Z(l —(a,n;)) idg, = 0.

=1
So we have
IX = coll> = > aaeal® = llaf*. =
(6

6.3.11. Corollary. Thefollowing statements are equivalent for an immersed
isoparametric submanifold M" of R"+*:
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(i) M iscompact,
(i1) all the curvature normals of M are non-zero.
(iii) M is contained in a standard spherein R %,

6.3.12. Corollary. If M™ isarank k isoparametric submanifold of R"+*
and zero is one of the curvature normalsfor M corresponding to the curvature
distribution E, then there exists a compact rank & isoparametric submanifold
M, of R*t+=mo quchthat M = Ey x M.

PrOOF. By Corollary 6.3.9, there exists a € R* such that (a,n;) = 1
foral 1 < i < p. Consider themap X* = X + > aneq : M — R*"F,

Then
p

dX* = Z(l —(a,n;)) idg, = idg,,
=0
and M* = X*(M) is aflat mo-plane of R***, So X* : M — M* isa
submersion, and in particular the fiber is a smooth submanifold of M. But the
tangent plane of the fiber is @?_, E;, so it is integrable. On the other hand
P_| E; isdefined by

W; = 0, 1 S mo,
S0 we have

O:dwi: Zwij/\wj: Z %-jmwm/\wj.

Jj>mo J,m>mg

Hence
Yijm = Yimj, fori < mg, j#m > my. (6.3.7)

By Proposition 6.2.7, we have
Aja’)/ijm = Amoz’}/i?nja for e < mo. (638)

If e;,en € Es for somes > 0, then Proposition 6.2.7 imply that «y;,,, = 0. If
e; and e,,, belong to different curvature distributions, then there exists oy such
that \jo, # Ama- S0(6.3.7) and (6.3.8) impliesthat ;;,, = 0. Thereforewe
have proved that

w¢j=0, wmz(), ing,j>m0,

on M. Let My = (X*)~1(g*). Then both M and M; x E, have flat normal
bundles and the same first, second fundamental forms. So the fundamental
theorem of submanifolds (Corollary 2.3.2) impliesthat M = M7 x Ey. =
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Next we discuss the irreduciblity of the associated Coxeter group of an
isoparametric submanifold, whichleadsto adecomposition theoremfor isopara-
metric submanifolds.

If M is isoparametric in R™ ™" with Coxeter group W; on R* for
i = 1,2, then M, x M, isisoparametric in R™ T"2+F1+k2 \with Coxeter group
W, x Wo on RF1 x R*¥2. The converseis also true.

6.3.13. Theorem. Let M™ beacompact rank k isoparametric submanifold
of R"** and I its associated Coxeter group. Suppose R¥ = R** x R*2 and
W = Wy x Ws, where W; is a Coxeter group on RF:. Then there exist two
isoparametric submanifolds M, M5 with Coxeter groups Wy, Ws respectively
suchthat M = My x Ms.

PROOF. We may assumethat n; € R¥* x 0, R, € W, fori < p;, and
n; € 0 X RFz, R; € Wy for j > pi. Since W is afinite Coxeter group,
there exists a constant vector a € R¥* x 0 such that (a,n;) = 1forali < p;.
Consider X* = X + > aqeq. Since (a,n;) = 0forall j > p;, we have

p

dX* = idp,.

J>p1

So an argument similar to that in Corollary 6.3.12 impliesthat V' = @igpl E;
and H = ®§>p1 E; areintegrable, and that M is the product of aleaf of V'

andaleaf of H. »

6.3.14. Definition. An isoparametric submanifold M" of R** is called
irreducible, if M is not the product of two lower dimensional isoparametric
submanifolds.

As a consequence of Theorem 6.3.13, we have:

6.3.15. Proposition.  An isoparametric submanifold of Euclidean space is
irreducible if and only if its associated Coxeter group isirreducible.

Since every Coxeter group can be written uniquely as the product of irre-
ducible Coxeter groups uniquely up to permutation, we have:

6.3.16. Theorem. Everyisoparametric submanifold of Euclidean space can
be written asthe product of irreducible ones, and such decomposition is unique
up to permutation.

Asaconsequence of Corollary 6.3.11 and the following proposition we see
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that the set of compact, i soparametric submanifol dsof Euclidean space coincides
with the set of compact isoparametric submanifolds of standard spheres.

6.3.17. Proposition. If M™ isan isoparametric submanifold of S*** then
M is an isoparametric submanifold of R*+#+1,

ProOF. Let X : M — S"* betheimmersion, and {e 4} the adapted
framefor X, w; the dual coframe, and w 4 g the Levi-Civita connection 1-form.
We may assume that e,,’s are parallel, i.e, w,g = 0forn < a, B8 < n+k.
Set epirpr1 = X, then {eq, ..., entr+1} IS an adapted frame for M as an
immersed submanifold of R****1. Since

denike1 = dX = Zwieu

wehave w,yr11, = 0and A, _, ., = —id. Thisimpliesthat M isisopara-
metricin R*TF+1. 4

6.4. EXxistence of isoparametric polynomial maps

In this section, given an isoparametric submanifold M ™ of R***, we will
construct a polynomial isoparametric map on R™** which has M as a level
submanifold. This construction isageneralization of the Chevalley Restriction
Theorem in Example 5.6.16.

By Corollary 6.3.11 and 6.3.12, we may assume that M" is a compact,
rank k isoparametric submanifold of R*** and M C S"t*~!. Let W bethe
Coxeter group associated to M, and p the number of reflection hyperplanes of
W, i.e., M has p curvature normals. In the following we use the same notation
asin section 6.2.

Givenq € M, thereisasimply connected neighborhood U of ¢ in M such
that U isembeddedin R ™*. Let e, beaparalle normal frame, v; the curvature
normalsza NiaCa, aNdn; = (nm+1, . ,nm+k). LetY : U x Rk — Rn+k
be the endpoint map, i.e.,, Y (z,2) = z + Y, za€q(x). Thenthereisasmall
ball B centered at the origin in R such that Y|U x B is alocal coordinate
system for R***. In particular, z - n; < 1foral z € Band1 < i < p. We
denote Y (U x B) by O. Infact, O isatubular neighborhood of M in R*tF,
Since M C S***~1 by Corollary 6.3.10 there existsavector a € R* such that

X = Zaaea.
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Then

Y = X+Zzaea—z o — Ug)E

Lety = z — a (note that y = 0 corresponds to the origin of R"** and the
W -action on g 4+ v(M ), induces an action on R* which islinear in y). Then
Y isasmooth function defined on the tubular neighborhood © of M in R***.
It iseasily seen that any TV -invariant smooth function « on R* can be extended
uniquely to asmooth function f on O that isconstant on all the parallel subman-
ifolds of the form M,,, where v isaparallel normal field on M withv(q) € B.
That is, we extend f by theformula f (Y (z, 2)) = u(z — a) = u(y). Wewill
call this f ssimply the extension of w.

In order to construct a global isoparametric map for M, we need the fol-
lowing two lemmas.

6.41. Lemma. Ifu:R¥ — RisaW-invariant homogeneous polynomial
of degree £, then the function

ply) = Y my T

i=1 Y
isa W-invariant homogeneous polynomial of degree k — 2.

PROOF. Let R; denote the reflection of R¥ along the vector n;. Since
u(Riy) = u(y), Vu(Ri(y)) = Ri(Vu(y)). Weclaim that Vu(y) - n; = 0
ify-n; =0. Forif y-n; = 0then R;(y) = v, 0 Vu(y) = R;(Vu(y)),
i.e., Vu(y) - n; = 0. Therefore p(y) is ahomogeneous polynomia of degree
k — 2. To check that ¢ is W -invariant, we note that

AW = T V“éf?;??;;”f

_E 1
n]

Ri(n;)
_Z Y- R(”J) '

Then the lemma follows from Theorem 6.3.2 (3). =

6.4.2. Lemma. Letu:R¥ — RbealV-invariant homogeneous polynomial
of degree k, and f : O — Ritsextension. Then

(i) A f isthe extension of a I¥/-invariant homogeneous polynomial of degree
(k —2) onRF,
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(ii) ||V f||? is the extension of a W -invariant homogeneous polynomial of
degree2(k — 1) onR*

PRrOOF. Since

dY = Z(l —z-n;)idg, + Zdzaea
= Zy © 2 ZdEl + Zdyoceom

we may choose a local frame field ey = e4 on O C R"T* and the dua
coframeis

i—1 )

wi = (y-nawy, i Y me <j< Y m,
r=1 r=1

w,; = dyq.

The Levi-Civita connection 1-formon O isw? 5 = wap. Then by (1.3.6) we
have

p
Aya — Z miNia )

.n.
i1 YT

Since f(z,y) = u(y), we have

df = uaws, [VfI? = [IVul?,

Yy-n,

where A, V are the standard Laplacian and gradient on R*. Then (i) follows
from Lemma 6.4.1. To prove (ii), we note that Vu(R;(y)) = Ri(Vu(y)), so
|Vul||? isaW-invariant polynomial of degree2(k — 1) onR*. »

6.4.3. Theorem. Let M™ bearank k isoparametric submanifold in R* ¥,
W the associated Coxeter group, ¢ apointon M, andv, = g+ v (M) theaffine
normal planeat q. If u : v, — Risa W-invariant homogeneous polynomial
of degree m, then u can be extended uniquely to a homogeneous degree m
polynomial f on R"*+* such that f isconstant on M.

Proor. We may assume v, = R*. We prove this theorem on O by
using induction on the degree k£ of u. The theorem is obvious for m = 0.
Supposeitistruefor al ¢ < m. Given adegree m W -invariant homogeneous
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polynomial « on R*, by Lemma 6.4.2, ||df||? is again the extension of a -
invariant homogeneous polynomial of degree 2k — 2 on R*. Applying Lemma
6.4.2 repeatedly, we have A™~1(||df||?) is the extension of a degree zero W-
invariant polynomial, hence it is a constant. Therefore

0= A™(|ldf]1*)

:Z Z Cras(Asf)i:ila-n,ir<A5/f)i,il,...,iT7

r=0 s+s'=m—r
I .

where ¢, ; are constants depending on r and s. We claim that

/
(A icigein (D% iviy iy 8 =m—1— 35,

iszeroif r < m. Forwemay assumethats > m—r —s,i.e., s > s’,s0s > 1.
By Lemma6.4.2, A\ f isthe extension of adegree m — 2s W-invariant poly-
nomial on R¥. By theinduction hypothesis, /\® f isahomogeneous polynomial
on® C R""* of degreem — 2s, henceall the partial derivativesof order bigger
than m — 2s will be zero. Wehaver + 1 > r > m — 2s by assumption, sowe

obtain
2
0= Z fi,il,...,im7

25115 5tm

i.e, D*f = 0in O for |o| = k + 1. Thisprovesthat f is a homogeneous
polynomial of degree k in ©. Thereisaunique polynomial extensionon R"1#,
which we still denoteby f.  »

By Theorem 5.3.18 there exist k£ homogeneous W -invariant polynomials
u1, ..., u; on RF such that the ring of W-invariant polynomials on R¥ is the
polynomial ring R[uy, . .., ug).

6.44. Theorem. LetM,W,q,v,beasinTheorem6.4.3,andletuy,...,ug
be a set of generators of the W-invariant polynomials on v,. Then v =
(u1, ..., us)extendsuniquelytoanisoparametric polynomial map f : R ™% —
R having M asaregular level set. Moreover,

(1) each regular set is connected,

(2) the focal set of M isthe set of critical points of f,

BuvgNnM=W -q,

@) FR™F) = u(v,),

(5) for x € vy, f(z) isaregular valueif and only if x is W-regular,

(6) v(M) isglobally flat.

PROOF. Let fi,..., f betheextended polynomialson R"**. Because
uy,...,u are generators, f = (f1,..., fr) will automatically satisfies con-
dition (1) and (2) of Definition 6.1. Since y,, are part of loca coordinates,
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[Ya;ys] = 0. But f isafunction of y, so condition (3) of Definition 6.1.1 is
satisfied. Then (1)-(5) follow fromthefact that u1, . . . , u; Separatethe orbits of
W and that regular points of themap u = (uq, ..., u) arejust the W-regular
points. Findly, since {V f1,...,Vfr} isaglobal, paralel, normal frame for
M,v(M)isglobaly flat. =

6.4.5. Corollary. Let M™ be an immersed isoparametric submanifold of
Rk, Then

(i) M is embedded,

(i) v(M) isglobally flat.

The above proof also gives a constructive method for finding all compact
irreducibleisoparametric submanifoldsof Euclidean space. To bemore specific,
given an irreducible Coxeter group W on R* with multiplicity m, for each
reflection hyperplane/; of W suchthatm, = m, if g(¢;) = ¢; forsomeg € W,
i.e., given amarked Dynkin diagram. Suppose W has p reflection hyperplanes
ly,...,0,. Let a; beaunit normal vector to ¢;. Setn = > ©_ m;. Let
uy,...,ur beafixed set of generatorsfor the ring of W -invariant polynomials
on R*, which can be chosen to be homogeneous of degree k;. Then there are
polynomias V;, ®;, U;;, and ¥, ;,,, on R* such that

Aui = V;(U), Vul . VUj = Uij(u),

Vu; - a;
Z m] y ] aj J = q)q,(u)v VU’H vu] Z \IIZ]m vu?n

Then any polynomial solution f = (fi1,..., fx) : R®™™* — R¥, with f; being
homogeneous of degree k;, of the following system is an isoparametric map:

Afi = Vi(f) + @i(f),

Vfi-Vfi=Uy(f), (6.4.1)
Vi,V ] = Z Ui ( £V fon-

Moreover, if M isany regular level submanifold of suchan f, thentheassociated
Coxeter group and multiplicitiesof M are W and mZ respectively.

Smceul : R* — Rcanbechosento bez - 9 .7; ,theextension f; on Rtk
|szn+k . S0 (6.4.1) isasystem of equationsfor (k — 1) functions. Because
both the coeffi cients and the admissible solutions for (6.4.1) are homogeneous
polynomials, the problem of classifying isoparametric submanifolds becomesa
purely algebraic one.
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6.4.6. Remark. Theorem 6.4.4 was first proved by Miinzner in [MU1,2] for
the case of isoparametric hypersurfaces of spheres, i.e., for rank 2 isoparametric
submanifolds of Euclidean space. Suppose W is the dihedral group of 2p
elements on R?>. Then W has p reflection lines in R?, and we may choose
a; = (cos(jm/p),sin(jn/p)) for 0 < j < p. By Theorem 6.3.2, all m;’s are
equal to someinteger m if pisodd, andm; =mg =---, mo =my = --- if
piseven. Sowehaven = pm if pisodd, andn = p(my + ms)/2if piseven.
It is easily seen that we can choose

uy(z,y) = 2 + 47, uz(z,y) = Re((z + iy)").

Let f; : R"™? — Rbetheextensons. Then f(x) = ||z|%. Let F = f,. Then
it follows from a direct computation that (6.4.1) becomes the equations given
by Minzner in [MU1,2]:

AF(x) = cl|=||P~
IVE(@)I]? = p*[l]*~2,

wherec = 0 if pisodd and ¢ = (mo — m1)p?/2 if piseven.

6.5. Paralld foliationsand The Slice Theorem

Inthissectionwewill provethat thefamily of parallel setsof anisoparamet-
ric submanifold of R™ gives an orbit-like singular foliation on R™. Moreover
we for this foliation have an analogue of the Slice Theorem for polar actions
(5.6.21), and this provides us with an important inductive method for the study
of such submanifolds.

Let X : M™ — S*F—1 C R"** pearank k isoparametric submanifold,
q € M,andv, = q+ v(M),. Note that v, contains the origin. Then
vy — (-, ¢i(q) has|W| (the order of W) connected components. The closure
A\ of each component isasimplicial cone, and is afundamental domain of 1V,
called achamber of 1/ on v,.

Let o beasimplex of A. We define the following:

1(g,0) = {jl o C 4;(9)},

V(g,0) = N{t(a)] 5 € I(q,0)},

&(g, o) = the orthogona complement of V' (¢, o) in v, through g,

(g, 0) = &(q,0) & B{E;(@)lj € I(z,0)},

mgo = S {m;|j € 1(q,0)},

W,.» = the subgroup of 1V generated by the reflections {R;?\j € 1(q,0)}.

6.5.1. Proposition. Let X : M" — S*Tk=1 C R*"** peisoparametric,
q € M, and A the chamber on v, containing g. Let o be a simplex of A, and
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v a parallel normal field on M suchthat ¢ + v(q) € 0. Let f : R*™* — RF
be the isoparametric polynomial map constructed in Theorem 6.4.4. Then

(i) Themap m, = X +v : M — R"* has constant rank n — m,, SO
the parallel set M, = (X + v)(M) isan immersed submanifold of dimension
n—mgandm, : M — M, isafibration.

(i) M, = f~1(f(qg+v(q)),i.e, M, isalevel setof f, so M, isan embedded
submanifold of R* %,

Proor. Notethat

dry, = d(X +v) = i(l — (v,v;)) idg,. (6.5.1)

=1

If dim(c) = k, i.e, ¢ +v(q) € o = (A)° theinterior of A, then 7, is an
immersion and all the results follows from Proposition 6.2.6. If dim(o) < k,
theni € I(q,0) if andonly if 1 = (v,v;). Sorank(m,) = n — m,, which
proves (i). (ii) follows from theway f isconstructed. =

6.5.2. Corollary. With the same notation asin Proposition 6.5.1:

(i) If v, w aretwo parallel normal fieldson M suchthat ¢+ v(q) and g+w(q)
aredistinct pointsin A\, then M, N M,, = 0.

(i) {M,| ¢ +v(q) € A} givesan orbit-like singular foliation on R"**, that
we call the parallel foliation of A/ on R™*F.

PrOOF. Letuq,---,u; beasetof generatorsfor thering of W-invariant
polynomias on v,. Then ug,---,u; separates W-orbits. Since ¢ + v(q)
and ¢ + w(q) are two distinct points in A\, there exists i such that u;(q +
v(q)) # wu;(q + w(q)). But the isoparametric polynomia f is the extension
of u = (uy,...,ux) to R"™, f(qg+ v(q)) # f(q¢ + w(q). But M, =
F~Y(f(q +v(q)). So (i) follows.

Giveny € R"™* et fy + M — R be the Euclidean distance function
defined by f,(z) = ||z — y||*. Since M is compact, there exists xg € M
such that f,(zo) is the absolute minimum of f,,. So the index of f, at zg is
zero, and it follows from Theorem 4.2.6 (iv) that y is in the chamber A, on
Vg, CONtaining xo. Let v be the unique parallel normal field on M such that
xo + v(xg) =y. Thenqg + v(q) € Aandy € M,, which prove (ii). =

6.5.3. Corollary. WththesamenotationasinProposition6.5.1, let B denote
A NS where S~ isthe unit sphere of v, centered at the origin (note that
0 € v,). Then {M,| g + v(q) € B} gives an orbit-like singular foliation on
S*+F=1 which will be called the parallel foliation of M on S*T+~1,
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Givenz € R""* welet M, denotethe uniqueleaf of the parallel foliation
of M that contains z. Then the paralle foliation of M in S*T*~1 and R"+*
can be rewritten as

{M,|z € A},

{M,|z € ANS1},

respectively.

6.5.4. Proposition. If M™ c S+~ ¢ R*** jsisoparametric, then for
all » # 0 we have

(i) » M isisoparametric for all » #£ 0,

(i1) M, isagain a parallel submanifold of M if M, is.

6.5.5. Corollary. Let M™ c S**k~1 ¢ R*"** beisoparametric, and F the
parallel foliation of A/ in S***~1. Then the parallel foliation of A/ in R"™* is
{rF|r>0, F e F}.

6.5.6. Examples. Let G/K beacompact, rank k symmetric space. Sincethe
isotropy representation of G/ K at eK ispolar (Example 5.6.16), the principal
K -orbits are codimension & isoparametric submanifoldsof P. LetG = K+ P
be the orthogonal decomposition with respect to the Killing form on G, and M
aprincipal K-orbitin’P. Then M isof rank k£ asan isoparametric submanifold,
v(M ), isjust themaximal abelian subalgebrathrough x in P, and the associated
Coxeter group W and chambers on v, are the standard ones for the symmetric
space. If v isaparalel normal field on M then the parallel submanifold M, is
the K -orbitthroughz+v(z), i.e., theparalel foliationof M istheorbitfoliation
of the K-actionon P. If y; = x + v(x) lies on one and only one reflection
hyperplane /;(z) then the orbit through y; is subprincipa (i.e., if gK.g~1 C
K,, and gK.g~' # K,, then z is a regular point), and the differences of
dimensionsbetween K x and Ky, ism;. Thereforethe marked Dynkin diagram
associated to M can be computed explicitly, and thiswill be done later.

In the following we cal culate the mean curvature vector for each M,,.

6.5.7. Theorem. Let M" C S**k~1 C R"** pe isoparametric, and let
{vi| i € I} beitssetof curvaturenormal fields. Letq € M, A achamber onv,,
o asimplexof A, and v aparallel normal field suchthat ¢* = g+v(q) € o. Let
H* denote the mean curvature vector field of M, inR" "%, 1f 2* = x4 v(x) €
M, then
(i) _—
H*(z*)= Y — ———(),

‘ 1—v-v
i€l \ 1(q,0)
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(i) H*(z*) € V(x,0).
In particular we have the following identities:

i€l \ I(q,0)

PROOF. Let I(0) denote I(q, o). It followsfrom (6.5.1) that
v(My)or = v(M), & EP{E;i(x)| i € I(0)},
M,) = EPE()|i el \ (o)}

We may assume e; (), ..., e.(x) span T'(M, ).~ (Wherer = n — m(q, o)),
O {eq(@)|n+1<a<n+k}U{e(x)j>r}spansv(M,),~. Letw?
and w’ 5 bethe dual coframe and connection 1-formson AM,,. Then by (6.5.1),
(1 —v-vs)w;, if e; € Ej,

ko
w; =

*
Wap — WAB-

So the projection of H*(z*) onto v(M),, is

m;v;(x)
2 Ty

i€I\I(0)

Let w); = Y m YijmWm. Then by Proposition 6.2.7, v;;; = 0if ¢ < r and
j > r. Thisproves (i).

For (ii), we need to show that H*(z*) - v;(z) = 0 for dl i € I(0).
It suffices to show that H*(z*) - v is a constant vector for al unit vector v €
E;(z)® Rv;(x) (because H* (z*) € v(M )5, 0 H*(z*)-e = 0if e € E;(x)).
To provethis, we notethat from v; /|| v; || defines adiffeomorphism from the | eaf
S;(x) of E; tothe unit sphere of E;(x) & Rv;(z), and the principal curvature
of M, inthese directions can be calculated as follows:

Vs - Uz

dej (") - wila) i) = deg(z) - i) il = e

*
Vs *V;  Wj

S I=vew ol

isaconstantife; € Egandj <r. =



6. | soparametric Submanifolds 133

6.5.8. Corollary. With the same notation as in Theorem 6.5.7, let 7 denote
the intersection of o and the unit sphere of v/,. Then

(i) L, = U{M,| z € 7} isa smooth submanifold of S*™*~1,

(ii) let zo € 7, then L isdiffeomorphicto M, x T,

(ii1) the mean curvature vector of M, in L, isequal to the mean curvature
vector of M, in S*TF—1,

Proor. (i) and (ii) are obvious, and (iii) is a consequence of Theorem
6.5.7 (ii). =

6.5.9. TheSliceTheorem. LetX : M" — R"** bearank k isoparametric
submanifold, W its Coxeter group, and m; its multiplicities. Let ¢ € M, and
let o be a simplex of a chamber A of W onv,,. Let&,, 0., m,, and W, denote
&(q,0),n(q,0), my.-, and W, ,, respectively. Let v be a parallel normal field
on M such that ¢ + v(q) € o, and let w, : M — R™** denote the fibration
X + v asin Proposition 6.5.1. Then:

(i) The connected component .S, ,, of the fiber of =, through g is a m,-
dimensional isoparametric submanifold of rank &£ — dim(o) in the Euclidean
space 7, .

(ii) Thenormal planeat g to S, ., in7, iS¢, the associated Coxeter group of
Sq.v 1Isthe W, and the reflection hyperplanesof S, , at g are {¢;(q) N &, | i €
I(g,0)}.

(iii) If v* is a parallel normal field on M such that ¢ + v*(q) € o, then
Sq.0 = Squ+, and will be denoted by S, ..

(iv) If u isaparallel normal field on M suchthat ¢+ u(q) € &, thenu|S, »
isa parallel normal field of S, » in7,.

(v) Givenz € V(q,0) wehave ||z — z|| = ||¢ — 2| forall z € S, ,.

(Vi) Ifx € S, thenoisasimplexiny, and V (z,0) = V(q,0).

ProOF. (iii) follows from the fact that Ker(d,) = Ker(dm,~), which

D1 Eili € I(q,0)}.

Let ¢* = m,(q). Itiseasily seen that we have
T(M,)s = @D{E;j is not in I(g,0)},

v(My)g = v(M), @ @D{Ei(2)]i € I(g,0)}, (6.5.2)

@{E )i € I(g, )},

foral z € S, ,. Note that the left hand side of (6.5.2) is a fixed plane in-
dependent of x € .S, , and the right hand side of (6.5.2) always contains the
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tangent planeof S, . Hence Sy C q+v(M, ). Moreover, if u isaparallel
normal field on M such that u(q) istangent to V' (¢, o) then (u, v;) = 0 for all
i € I(q,0). Thisimpliesthat d(u|S, ) = 0, i.e, V(q, o) is perpendicular to
Sq.0. Soit remainsto prove that S, , isisoparametric. But this follows from
thefact that M isisoparametric. =

6.5.10. Example. Suppose M™ is an isoparametric submanifold of R™*3,
M is contained in S"2, Bs is the associated Coxeter group, and its marked
Dynkin diagram is:

B3 O—C——0©
ma mo ms

Then the fundamental domain of 1V on S? of v, isthe following geodesic
triangle on S*:

6.6. Applicationsto minimal submanifolds

In this section we will give a generalization of the Hsiang-Lawson [HL]
cohomogeneity method for minimal submanifolds. For details see [PT1].

Let 7 : £ — B be aRiemannian submersion. A submanifold NV of £
will be called projectable if N = 7—!(M) for some submanifold M of B.
A deformation F; of N iscalled projectable if each F; (V) is projectable, and
F} iscalled horizontal if each curve F(x) is horizontal, or equivalently if the
deformation vector field of F} ishorizontal. F; isam-invariant deformationof N
if itisboth projectable and horizontal. Clearly if f; : M — B isadeformation
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of M then thereisaunique w-invariant lifting F; : N — FE of f;; namely for
each x in N, F;(x) isthe horizontal lift of the curve f;(7(x)) through x, and
the deformation field of F; isthe horizontal lift of the deformation field of f;.
Thus there is a bijective correspondence between the r-invariant deformations
of N =n~1(M) in E and deformations of M in B.

6.6.1. Definition. The fiber mean curvature vector field & of a Riemannian
submersionn : E — Bisdefinedasfollows: h(x) isthemean curvature vector
a x of thefiber 7= (7 (z)) in E.

The following proposition follows by a straightforward calculation.

6.6.2. Proposition. Letw : E — B bea Riemannian submersion, M a
submanifold of B, and N = 7=~ 1(M). Let H denote the mean curvature of M
in B, H the mean curvature of N in E, H* the horizontal lifting of H to NV,
and h the fiber mean curvature vector field in £. Then

H = P(h) + H*,
where P, isthe orthogonal projection of TE,, onto v(N ).

6.6.3. Definition. A Riemannian submerson = : £ — B is cdled h-
projectable if the fiber mean curvature vector field h is projectable. We call
7 quasi-homogeneous if the eigenvalues of the shape operator of any fiber
F = 7~ 1(b) with respect to any 7-paralel field ¢ are constant (depending only
ondr(£), notonz in F).

6.6.4. Remark. It isimmediate from the above formula defining A that a
guasi-homogeneous Riemannian submersion is h-projectable.

6.6.5. Example. Let E beaRiemannian G-manifold. If £ hasasingle orbit
type, then the orbit space B = E/G isasmooth manifold and thereisaunique
metric on B such that the orbit map 7 : £ — B isaRiemannian submersion.
Then 7 is quasi-homogeneous.

6.6.6. Theorem. Letw : F — B beah-projectableRiemanniansubmersion,
and M a submanifold of B. Then a submanifold N = 7= (M) of E isa
minimal submanifold of F if and only if NV is a stationary point of the area
functional A with respect to all the w-invariant deformations of N in E.

ProOF. Wehave H = P(h)+ H* by Proposition 6.6.2. Since h ispro-
jectable and dr, (v(N),) = V(M) (2), P(h) and therefore H is projectable.
Let ¢ denote the normal field d(H) of M in B. Then fi(z) = exp,(t&(x))
defines a deformation of M in B with £ as deformation field. Let f; be the
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induced m-invariant deformation of /V in E. Then the deformation field of f;*
isH. Let A(t) = the area of f;(IN), then

A(0) = / | H|?do.
M

If N isacritical point of A with respect to al w-invariant deformations, then
A'(0)=0,hence H =0. =

Let 7 : E™* — B be an h-projectable Riemannian submersion. Then
the above theorem implies that the minimal equation for finding (n + r) di-
mensiona m-invariant minimal submanifolds in E is reduced to an equation
in r independent variables. To be more specific, if the fiber of 7 is compact
we definev : B — R by v(b) = the volume of 7—1(b). Then the volume of
7~1(M) isthe integral of the positive function v with respect to the induced
metric on M . Hence we have:

6.6.7. Theorem. Suppose 7 : (F,g9) — (B,g) is an h-projectable
Riemannian submersion. Then 7= (M) is minimal in E if and only if M is
minimal in (B, g*), where g* = v%/"g, v(b) =the volume of 7—'(b), and
r =dim(M).

6.6.8. Remark. If 7 ish-projectable, then the vector equation H= P(h) +
H* is equivalent to the equation dw(H) = dr(P(h)) + H. Hence one can
reduce the problem of finding 7r-invariant minimal submanifolds N = 7« =1 (M)
of E tothe problem of finding asubmanifold M of B with the prescribed mean
curvature vector H = —dn(P(h)). We can also reduce the problem of finding
constant mean curvature hypersurfaces N in E to the problem of finding a
hypersurface M of B withtheprescribed meancurvature H = —||dn(P(h))||+
c, for some constant c.

6.6.9. Definition. Suppose F is acomplete Riemannian manifold, and B =
U, Ba is a dtratified set such that each B, is a Riemannian manifold. A
continuousmap r : £ — Biscalled astratified submersionif £, = 771(B,)
isadtratificationof £, and 7, = 7|F,, : £, — B, isasubmersionfor each «.
Then 7 iscalled astratified Riemannian submersion if each 7, isaRiemannian
submersion, and 7 is called h-projectable (resp. quasi-homogeneous) if the
mean curvaturevector of 7, 1 (b) in E,, isthemean curvaturevector of 7 1 (b) in
Efordl aandbin B, and each 7, ish-projectable(resp. quasi-homogeneous).

6.6.10. Definition. M isadtratified subset of astratified set B if M N B, isa
submanifold of B,,, for each stratum B,,. A deformation f; : M — B isstrata
preserving if f;(M N B, ) iscontained in B, for each a. A submanifold IV of
E is m-invariant if N isof the form #—1 (M) for some stratified subset M of
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B. Given astratapreserving deformation f; of M into B, thenthereisaunique
horizontal stratapreservinglifting F; of f,. Wecall suchadeformationof NV ar-
invariant strata preserving deformation. Then the following isastraightforward
generadization of Theorem 6.6.6 above.

6.6.11. Theorem. Letw: F — B beastratified h-projectable Riemannian
submersion. Thenar-invariant submanifold NV of E'isminimal in E if and only
if N isacritical point of the area functional with respect to all the w-invariant
strata preserving deformations of N in E.

6.6.12. Example. Let G be a compact Lie group acting isometrically on a
complete Riemannian manifold £. The mean curvature vector field H of an
orbit Gz in E is clearly a G-equivariant normal field, and hence H (z) liesin
the fixed point set of the isotropy representation at x. But this fixed point set is
the tangent space of the union of the orbits of type (G,.). Then the orbit space
E/G is naturaly stratified by the orbit types, and each stratum has a natural
metric such that the projection map 7 : £ — E/G is a quasi-homogeneous
Riemannian submersion. Theorems 6.6.6 and 6.6.11 for this case were proved
in[HL].

6.6.13. Example. Let M™ C S*T*~1 C R""* peisoparametric, W the
Coxeter group associated to M, and A, the Weyl chamber of W on v, =
q+v(M), = v(M), containing ¢. Since A\, isasimplicial cone, B = the
intersection of the unit sphere S*~! of v, and A, has a natural stratification.
In fact, each stratum of B is given by the intersection of some simplex of A,
with S*~1. Let M, denote the unique submanifold through 2z € B and parallel
to M. By Corollary 6.5.3 we have:

| J{M,|z € By =57+,
If o isastratumof B and z¢ € B, then
E, =| J{M;|z € 0}

isdiffeomorphicto M, x o. Sothestratification on B induces oneon gkl
Let 7w : S***~1 — B bedefined by 7(y) = = if y € M,. Then by Corollary
6.5.8, w isadtratified quasi-homogeneous Riemannian submersion. Let o bea
stratum of B, x € B, and n, = dim(M,). Then the function 4, : ¢ — R
defined by A, (z) = n,-dimensiona volumeof M, iscontinuous. If = lieson
the boundary 0o then dim(M,,) < n,. S0 A, restrictsto Jo is zero. Since o
is compact, there exists x, € o which isthe maximum of A,. So by Theorem
6.6.6, M, isaminimal submanifold of S***~!, For k=3, theminimal equation
of m-invariant N™ in S*** isan ordinary differential equation on S* /W, which
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dependsonly onthemultiplicitiesm,;. Hencethe construction of conomogeneity
1 minimal hyperspheres in S**! given in [Hs2,3] (with TV being of rank 2),
produces more minimal hyperspheresin S* ™1, which are not of conomogeneity
one [FK].



Chapter 7
Proper Fredholm Submanifolds in Hilbert Spaces

In this chapter we generalize the submanifold theory of Euclidean spaceto
Hilbert space. In order to use results the infinite dimensional differential topo-
logical we restrict ourself to the class of proper Fredholm immersions (defined
below).

7.1. Proper Fredholm immersions

Let M be an immersed submanifold of the Hilbert space V' (i.e,, T M, is
aclosed linear subspace of V), and let v(M), = (T'M,,)* denote the normal
planeof M atxinV . Usingthesameargument asin chapter 2, we concludethat,
given asmooth normal field v on M and u € T'M,,,, the orthogonal projection
of dv,, (u) onto T'M,,, depends only on v(x) and not on the derivatives of v
at xo; it be denoted by —A,,(,,,)(u) (the shape operator of M with respect to
the normal vector v(z)). The first and second fundamentals forms I, /7 and
the normal connection V¥ on M can be defined in the same (invariant) manner
asin the finite dimensional case, i.e.,

I(z) = (, )[TM,,

(II(z)(u1,uz),v) = (Ay(u1), uz),
V¥v = the orthogonal projection of dv onto v(M).

Since al these local invariants for M are well-defined, the method of moving
frameisvalid here (because when we expand well-defined tensor fieldsin terms
of local orthonormal framefield, thentheinfinite seriesareconvergent). Arguing
the same way asin the finite dimensional case, we can provethat I, 11 and the
induced normal connection V" satisfy the Gauss, Codazzi and Ricci equations.
Moreover, the Fundamental Theorem 2.3.1 isvalid for immersed submanifolds
of Hilbert space. As a consequence of the Ricci equation, we also have the
analogue of Proposition 2.1.2:

7.1.1. Proposition.  Suppose M isan immersed submanifold of the Hilbert
spaceV andthenormal bundlev (M) isflat. Thenthefamily {A,|v € v(M),}
of shape operatorsisa commuting family of operatorson 7'M,,.

Although these elementary parts of the theory of submanifold geometry
work just as in the finite dimensional case, many of the deeper results are not

139
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true in general. For example, the infinite dimensional differential topology
developed by Smale and infinite dimensional Morse theory developed by Palais
and Smale will not work for general submanifolds of Hilbert space without
further restrictions. Recall alsothat the spectral theory of the shape operatorsand
the Morse theory of the Euclidean distance functions of submanifoldsof R" are
closely related and play essential rolesin the study of the geometry and topol ogy
of submanifoldsof R". Here again, without some restrictionsimportant aspects
of these theories will not carry over to the infinite dimensional setting. One of
the main goals of this section is to describe a class of submanifolds of Hilbert
space for which the techniques of infinite dimensional geometry and topology
can be applied to extend some of the deeper parts of the theory of submanifold
geometry.

Theendpointmap Y : v(M) — V for animmersed submanifold M of a
Hilbert space V' is defined just as in Definition 4.1.7; i.e, Y : v(M) — Vis
givenby Y (v) = x + v forv € v(M),.

7.1.2. Definition. Animmersed finite codimension submanifold M of V' is
proper Fredholm (PF), if

(i) the end point map Y is Fredholm,

(i) therestriction of Y to each normal disk bundle of finite radiusr is proper.

Since the basic theorems of differential calculus and local submanifold
geometry work for PF submanifoldsjust asfor submanifoldsof R™, Proposition
4.1.8isvalid for PF submanifolds of Hilbert spaces. In particular, we have

dY, = (I — Ay, id), (7.1.1)
which implies that

7.1.3. Proposition. Theend point map Y of an immersed submanifold M of
a Hilbert space V' isFredholmif and only if I — A,, is Fredholm for all normal
vector v of M.

7.1.4. Remarks.

(i) An immersed submanifold M of R™ isPFif and only if theimmersion is
proper.

(i) If M is a PF submanifold of V', and M is contained in the sphere of
radius - with center zo in V, then v(z) = xo — x isanormal field on M with
lengthr, and Y (z, v(z)) = xo. SinceY isproper on ther-disk normal bundle,
M iscompact. Thisimpliesthat M must be finite dimensionional. It follows
that PF submanifolds of an infinite dimensional Hilbert space V' cannot lieon a
hypersphere of V. In particular, the unit sphere of V' is not PF.
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7.1.5. Examples.
(1) A finite codimension linear subspace of V' is PF.
(2) Let p : V — V be aself-adjoint, injective, compact operator. Then the
hypersurface
M ={z e V|(p(x),z) =1}

is PF. To see this we note that v(x) = ¢(x)/||¢(x)|| is aunit normal field
to M, and A, () (u) = —p(u)™™= /|¢(z)]| is a compact operator on T'M,,
where o (u)TM-= denote the orthogonal projection of o(u) onto TM,. So it
follows from Proposition 7.1.3 that the end point map of M is Fredholm. Next
assumethat z,, € M, {\,p(z,)} isbounded, and Y (z,,, A\np(z1)) = @ +
Ano(xy,) — y. Thenz,, isbounded, and (z,, + A\, o(2,,), ) = ||z ||?+ A iS
bounded, which impliesthat \,, isbounded. Since ¢ iscompact and {\,x,, } is
bounded, ¢ (A, z,,) hasaconvergent subsequence, and so { z,, } hasaconvergent
subsequence.

7.1.6. Theorem. Suppose G isaninfinitedimensional Hilbert Lie group, G
actsontheHilbert space V' isometrically, and theactionisproper and Fredholm.
Then every orbit Gz isan immersed PF submanifold of V.

Proor. First we prove that the end point map Y of M = Gz is Fred-
holm. Because every isometry of V' is an affine transformation, we have

(I = A)(E(2)) = (E(z + )",

where¢ € G,v € v(M),, and u”’= denotesthe tangential component of u with
respect tothedecomposition V' = T'M, &v(M),.. Itfollowsfromthedefinition
of Fredholm action that the differential of the orbit map at e is Fredholm. So
the two maps ¢ — £(x) and £ — &(x + v) are Fredholm maps from G to
V. In paticular, T(Gx), and T'(G(z + v)),+, ae of finite codimension.
Sothemap P : T(G(x + v))pio — T(Gx), defined by P(u) = u’= is
Fredholm. Hence I — A, isFredholm, i.e., Y is Fredholm. Next we assume
that z,, € M, v, € v(M),,, ||lvn| < r, and Y(x,,v,) — y. Then there
exist linear isometry ¢,, of V and ¢,, € V such that g, = ¢, + ¢, € G and
Ty, = gn(x). Notethat dg, = ¢n, u, = ¢, 1 (v,) € v(M),, and

Y(gna:,vn) = @n(x)+cn+¢n(un) = @n($+un)+cn = gn($+un) - Y.

Since {u, } is a bounded sequence in the finite dimensiona Euclidean space
v(M),, there exists a convergent subsequence u,,, — u. Sowe have g,,, (z +
Up,) — y and z + u,, — = + u. It then follows from the definition of proper
action that g,,, has a convergent subsequence in G, which impliesthat x,,, has
aconvergent subsequencein M. =
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7.1.7. Proposition. Let M be an immersed PF submanifold of V', x € M,
v € v(M),, and A, the shape operator of M with respect to w.
Then:

(1) A, hasno residual spectrum,

(2) the continuous spectrum of A, iseither {0} or empty,

(3) the eigenspace corresponding to a non-zero eigenvalue of A, is of finite
dimension,

(4) A, iscompact.

ProoOF. Since A, isself-adjoint, it has no residual spectrum. Note that
the eigenspace of A,, with respect to anon-zero eigenvalue \ is

1
Ker(A — A,) = Ker(I — XAU) = Ker(I — Az).

So (3) followsfrom Proposition 7.1.3. Now suppose A # 0, Ker(A, —\I) = 0,
andIm(A, — AI) isdensein T'M,,. Since A, — Al isFredholm, Im(A, — A1)
isclosed and equal to T'M,, i.e., A, — A\l isinvertible, which proves (2). To
prove (4) it suffices to show that if \; isasequence of distinct real numbersin
the discrete spectrum of A, and \; — A then A = 0. Butif A # 0, then the
self-adjoint Fredholm operator P = I — A,/ induces an isomorphism P on
V/Ker(P), so P isbounded. Let § denote || P||. Then |(1 — X;/A)~!| < 6,
and hence |\ — \;|/|A\| > 1/ > 0, contradicting \; — A. =n

It follows from (7.1.1) that e € (M), isaregular point of Y if and only
if I — A, isanisomorphism. Moreover, the dimension of Ker(I — A.) and
Ker(dY,) are equal, which isfinite by Proposition 7.1.3. Hence the Definition
4.2.1 of focal points and multiplicities makes sense for PF submanifolds.

7.1.8. Definition. Lete € v(M),. Thepointa = Y(e) in V iscaled a
non-focal point for a PF submanifold M of V' with respect to x if dY, isan
isomorphism. If m = dim(Ker(dY.)) > 0 then a is called afocal point of
multiplicity m for M with respect to x.

Theset I' of all thefocal pointsof V' iscalled thefocal setof M inV,i.e,
I" isthe set of al critical values of the normal bundle map Y. So applying the
Sard-Smale Transversality theorem [Sm2] for Fredholm maps to the end point
map Y of M, we have:

7.1.9. Proposition.  The set of non-focal points of a PF submanifold M of
V isopen and densein V.

By the same proof asin Proposition 4.1.5, we have:
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7.1.10. Proposition. Let M be an immersed PF submanifold of V', and
a € V. Let f, : M — R denote the map defined by f,(z) = ||z — a®.
Then:

(i) Vfu(x) = 2(z — a)T=, the projection of (z — a) onto T'M,, SO in
particular z( isacritical point of f, ifand only if (xg — a) € v(M),,,

(i) $V2fa(zo) =1 — A(a—a) a thecritical point zq of f,,

(iii) f, isnon-degenerateif and only if a isa non-focal point of M inV/,

It follows from Propositions 7.1.9 and 7.1.10 that:

7.1.11. Corollary. If M isanimmersed PF submanifold of V, then f, is
non-degenerate for all a in an open dense subset of V.

As a consequence of Proposition 7.1.7 and 7.1.10:

7.1.12. Proposition. Let M beanimmersed PF submanifold of V. Suppose
ro isacritical point of f, and V) isthe eigenspace of A,_,,,) with respect to
the eigenvalue \ # 0.
Then:

(i) dim(V) isfinite,

(i) Index(fq, xo) = >_{dim(V)|A > 1}, whichisfinite.

Morse theory relates the homology of a smooth manifold to the critical
point structure of certain smooth functions. Thistheory was extended to infinite
dimensional Hilbert manifoldsin the 1960's by Palais and Smale ([Pa2],[ Sm1])
for the class of smooth functions satisfying Condition C (see Part |1, chapter 1).

7.1.13. Theorem. Let M beanimmersed PF submanifold of a Hilbert space
V,anda € V. Thenthemap f, : M — R defined by f,(z) = ||z — al?
satisfies condition C.

Proor. Wewill write f for f,. Suppose

1f(zn)| < e |Vf(xn)] — 0.

Let u,, be the orthogonal projection of (z,, — a) onto T'M,., and v,, the pro-
jection of (x,, — a) ontov(M),, . Since ||z, —a||* < candu,, — 0, {v, } is
bounded (say by ). So (z,,, —v,,) isasequencein the r-disk normal bundle of
M, and

Y(l’na—vn):J?n—Un:($n—a)—vn+a:un+a—>a.

Since M is a PF submanifold, (z,,—v,) has a convergent subsequence in
v(M), whichimpliesthat z,, has a convergent subsequencein M.
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7.1.14. Remark. Let M be animmersed submanifold of V' (not necessarily
PF). Then the condition that al f, satisfy condition C is equivaent to the
condition that the restriction of the end point map to the unit disk normal bundle
IS proper.

7.2. |soparametric submanifoldsin Hilbert spaces

In this section we will study the geometry of isoparametric submanifolds
of Hilbert spaces. They are defined just asin R".

7.2.1. Definition. Animmersed PFsubmanifold M of aHilbert space (V, (, ))
is called isoparametric if

(i) v(M) isglobaly flat,

(ii) if v isa paralel normal field on M then the shape operators A,y and

A, (y) areorthogonally equivalent for al x,y € M.

v(y

7.2.2. Remark. Although Definition 5.7.2 seems weaker than Definition
7.2.1 (where we only assumethat v(M) isflat), if V = R", we have proved in
Theorem 6.4.4 that (M) isglobally flat. So these two definitions agree when
V isafinite dimensional Hilbert space.

7.2.3. Definition.  Animmersed submanifold f : M — V isfull, if f(M) is
not included in any affine hyperplaneof V. M isarank k immersed isoparamet-
ric submanifold of V' if M isafull, codimension k, isoparametric submanifold
of V.

7.2.4. Remarks.

(i) Since PF submanifolds of V' have finite codimension, an isoparametric
submanifold of V' is of finite codimension.

(i) It followsfrom Remark 7.1.4 that if M isafull isoparametric submanifold
of V and M iscontained in the sphere of radius r centered at ¢, then both M
and V' must be of finite dimension.

Since compact operators have eigen-decompositons and the normal bundle
of an isoparametric submanifold of V' isflat, it follows from Proposition 7.1.1
and 7.1.7 that:

7.25. Proposition. If M isan isoparametric PF submanifold of a Hilbert
space V, then there exist Ey and a family of finite rank smooth distributions
{E;| i € I} suchthat TM = Ey@{E;|i € I} isthe common eigen-
decomposition for all the shape operators A, of M and A,|Ey = 0.
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Since A, islinear for v € V, there exist smooth sections A; of v(M)*
such that
Ay|E; = \i(v)idg,,

forali e I. Identifying v(M )* with v(M) by theinduced inner product from
V', we obtain smooth normal fields v; on M such that

141)|EZ = <U,Ui>idEi, (721)

foral i € I. These E;’s, \;’s and v;’s are caled the curvature distributions,
principal curvatures, and curvature normals for M respectively. If v is a par-
allel normal field on an isoparametric submanifold M then A, has constant
eigenvalues. So it follows from (7.2.1) that each curvature normal field v; is
paralel.

7.2.6. Proposition. If M isarank k isoparametric PF submanifold of
Hilbert space, and {v;| i € I'} areitscurvature normals, thenthereisa positive
constant ¢ such that ||v;|| < cfor all i € I.

Proor. Let F' denote the continuous function defined on the unit sphere
S~ of the normal plane v(M), by F(v) = ||A,||. Since S*~! is compact,
thereisaconstant ¢ > 0 such that F'(v) < c¢. Since the eigenvalues of A, are
(v,v;), wehave |(v,v;)| < cforal i e I andall unitvectorv € v(M),. =

7.2.7. Proposition. Let M bearank k£ immersed isoparametric submanifold
of Hilbert space, v, = q+v(M ), theaffinenormal planeat ¢, andI'y = I'Ny,
the set of focal points for M  with respect to g.
Then:

(i) Ty =U{4(q)| i € I}, where?;(q) isthe hyperplanein v, defined by

li(q) = {g +vlvev(M)y, (v,vi(q)) =1}

(i) H = {l:(q)| i € I} islocally finite, i.e., given any point p € v, thereis
an open neighborhood U of p in v, suchthat {i € I]¢;(¢) N U # 0} isfinite.

Proor. LetY betheendpointmapof M. By (7.2.1),x = g+e € L' if
andonlyif 1isaneigenvalueof A.. Sothereexistsiy € I suchthat1 = (e, v;,),
i.e,z € l; (q). Thisproves(i).

Let J(z) ={i € I| z € {;(q)} forx = ¢ + e € v,. Then the eigenspace
Vi of A, corresponding to eigenvalue 1 is @{E;|j € J(x)}. Since A, is
compact and {{e, v;)| i € I} arethe eigenvalues of A., the set J(z) isfinite
and there exist 6 > 0 such that |1 — (e, v;)| > ¢ for al 7 notin J(z). By
analytic geometry, if i isnot in J(x) then

e ti(a)) = TS0

[[oi ]2
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where cisthe upper bound for ||v; || asin Proposition 7.2.6. So we conclude that
theball B(x,d/c) of radiusd /c and center z meets only finitely many ¢;(q) (in
fact it intersects ¢;(q) only fori € J(x)). =

We next note the following:

(i) the Frobenius integrability theoremisvalid for finite rank distributions on
Banach manifolds,

(ii) the proof of the existence of a Coxeter group in Chapter 6 depended only

on the facts that all the curvature distributions and v (M) are of finite rank and
the family of focal hyperplanes {¢; | i € I} islocaly finite.
So it is not difficult to see that most of the results in sections 6.2 and 6.3 for
isoparametric submanifolds of R™ can be generalized to the infinite dimensional
case. In particular the statements from 6.2.3 to 6.2.9, from 6.3.1 to 6.3.5, and
the Slice Theorem 6.5.9 are all valid if wereplace M by arank k isoparametric
submanifold of aHilbert spaceandtheindex set 1 < ¢ < p of curvaturenormals
by {i|i € I}. Inparticular theanal oguesof Theorem 6.3.2 and 6.3.5for infinite
dimensional isoparametric submanifolds give:

7.2.8. Theorem. Let o, be the involution associated to the curvature
distribution F;.

(i) Thereexistsabijectiono; : I — I suchthat o;(i) =i, ¢} (E;) = E
and mj; = Mg, (5)-

(ii) Let R} denote the reflection of v, in £;(¢). Then

RI(45(q)) = Loy (a),

i.e, R] permutes M = {¢;(q)|i € I},

a:(J)

Note that R] permutes hyperplanes in H and H is locally finite, so by
Theorem 5.3.6 the subgroup of isometries of v, = ¢ + v(M), generated by
{R? | i € I} isaCoxeter group.

7.2.9. Theorem. Let M be an immersed isoparametric submanifold in
the Hilbert space V/, E; the curvature normals, and {v;|i € I} the set of
curvature normals. Let W7 be the subgroup of the group of isometries of the
affinenormal planev, = ¢+ v (M), generated by reflections ¢, in¢;(q). Then
W4 is a Coxeter group. Moreover, let w, o @ v(M), — v(M), denote the
parallel transation with respect to theinduced normal connection, then the map
Pyq Vg — vy, defined by Py o (q +u) = ¢’ + 74,4 (u), conjugates W to
W4 for any g and ¢’ in M.

7.2.10. Corollary. Let M be arank k& immersed isoparametric subman-
ifold of the infinite dimensional Hilbert space V, {F;|i € I} the curvature
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distributions, and {¢;(q)|i € I} the curvature normal vectorsat ¢ € M. Then
associated to M there is a Coxeter group W with {¢;(q)|i € I} asits root
system.

7.211. Corollary. Let M be an isoparametric submanifold of the infinite
dimensional Hilbert space V, {E;|i € I} the curvature distributions, and
{v;|i € I} the curvature normals. Suppose 0 € [ and vy = 0.
(1) If I isafinite set, then
(i) there existsa constant vector ¢y € V suchthat (\{¢;(q)|i € I} = {co}
forall g € M,
(i) the Coxeter group associated to M isa finite group,
(iii) the rank of Ej isinfinite,
(iv) E = @{E;li #0, i € I} isintegrable,
(V) M ~ S x Ey, where S isan integral submanifold of £.
(2) If I isaninfinite set, then the Coxeter group associated to M isaninfinite

group.

Let A, be the connected component of v, \ ({¢; | i € I} containing
q. If I isan infinite set, then W is an affine Weyl group, the closure A, isa
fundamental domain of W and its boundary has k + 1 faces. If ¢ € W and
gﬁ(fz) = Kj then m; = m;. It follows that:

7.2.12. Corollary. Let M bearank £k isoparametric submanifold of an in-
finite dimensional Hilbert space having infinitely many curvature distributions.
Thenthereisassociated to M awell-defined marked Dynkin diagramwith &£+ 1
vertices, namely the Dynkin diagram of the associated affine Weyl group with
multiplicities m;.

7.2.13. Example. Let G bethe H L-loops on the compact simple Lie group
G, V the Hilbert space of H°-loops on the Lie algebra G of G, and let G act
on V' by gauge transformations as in Example 5.8.1. This action is polar, so
the principal G-orbitsin V are isoparametric. In the following we calculate the
basic local invariants of these orbits as submanifoldsof V. Let A™ denote the
set of positiveroots of G. Then thereexist 2, andy,, inG foral o € AT such
that
G =T P{Rra ®Ryala € AT},

[h,!L‘a] = Oé(h)ya, [h,ya] = _a(h)xOn

foral h € 7. If rank(G) = kand {t1, ..., } isabasesof 7, then the union
of the following sets

{24 cosnb), y,cosnb| a € AT, n > 0an integer},
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{24 sinmb, yosinmb| a € AT, m > 0 an integer},
{t;cosnd, t;sin mO| 1 <i <k, n>0, m>0, are integers}

is a separable basis for V. An orbit M = Gio is principal if and only if
a(to) +n # 0fordla € AT andn € Z. Lett, € 7 bearegular point. Then
the shape operator of M along the direction ¢, is

A (v + [v,t0]) = [v, 1].

Using the above separable basis for V/, it is easily seen that A; isacompact
operator, the eigenvalues are

{a(t1)/alto) + n|ae AT, neZ},
and each has multiplicity 2. So the associated Coxeter group of M as an

isoparametric submanifold is the affine Weyl group W (7°) of the section 7°,
and all the multiplicitiesm,; = 2.



Chapter 8
Topology of |soparametric Submanifolds

Inthischapter weusethe M orsetheory developedinpart |1 to provethat any
non-degenerate distance function on an isoparametric submanifold of Hilbert
space is of linking type, and so it is perfect. We also give some restriction for
the possible marked Dynkin diagrams of these submanifolds. As a byproduct
we are able to generalize the notion of tautnessto proper Fredholm immersions
of Hilbert manifoldsinto Hilbert space.

8.1. Tight and taut immersionsin R"

Let p : M™ — R™ be animmersed compact submanifold, and v (M) the the
bundle of unit normal vectorsof M. Therestriction of the normal map N of M
to v (M) will still be denoted by N, i.e., N : v1(M) — S™~ ! isdefined be
N(v) = v. Thereisanatural volume element do on v (M). Infact, if dV is
a(m —mn —1)-formon v! (M) such that dV restrictsto each fiber of v (M),
is the volume form of the sphere of v(M),, then do = dv A dV/, where dv
is the volume element of M. Let da be the standard volume form on S*F+—1
normalized so that fsn+k_1 da = 1. Then the Gauss-Kronecker curvature of

an immersed surfacein R® can be generalized as follows:

8.1.1. Definition. TheLipschitz-Killing curvature at the unit normal direction
v of an immersed submanifold M™ in R™ is defined to be the determinant of
the shape operator A,,.

8.1.2. Definition. The total absolute curvature of an immersion ¢ : M™ —
R™is

(M, ) = / | det(Ay)| do,
vi(M)

where do isthe volume element of v (M), and A, isthe shape operator of M
in the unit normal direction v.

8.1.3. Definition. Animmersion ¢, : M"™ — R™ iscalled tight if
T(Ma Qp) > T(Mv 900)7
for any immersionsp : M — R®.

149
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Chern and Lashof began the study of tight immersions in the 1950's
[CL1,2]. They proved the following theorem:

8.1.4. Theorem. Ifp: M"™ — R™ isanimmersion then, for any field F',

T(Mv(p) > ZbZ<M7F)7

where b; (M, F) isthe i*" Betti number of M with respect to F.

It isadifficult and as yet unsolved problem to determine which manifolds
admit tight immersions. An important step towards the solution is Kuiper's
[Ku2] reformulation of the problem in terms of the Morse theory of height
functions. Given aMorsefunction f : M — R, let

px(f) = the number of critical points of f with index £k,

u(f) = Zum-

The Morse number (M) of M isdefined by
(M) =inf{u(f)| f : M — Ris a Morse function}.

Lety : M™ — R™ beanimmersion. By Proposition4.1.8, dN,, = (—A,, id),
so we have
N*(da) = (—1)" det(A,)do,

and the total absolute curvature 7(M, ¢) is the total volume of the image
N(v'(M)), counted with multiplicities but ignoring orientation. Let h,, de-
note the height function as in section 4.1. Then it follows from Propositions
4.1.1and 4.1.8that p € S™ ! isaregular value of N if and only if the height
function %, isaMorse function. Inthiscase N~ (p) is afinite set with p(h,,)
elements. But by the Morse inequalities we have 1i(hy,) > >, b;(M, F), and
in particular:

(M. ) = 3 bl

(M, p) > ~(M).

This proves the following stronger result of Kuiper:

8.1.5. Theorem.

() y(M) = inf{T(M,¢)| ¢ : M — R™ is an immersion }.

(il) Animmersion ¢ : M — R™ istight if and only if every non-degenerate
height functions h,, has (M) critical points.
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Banchoff [Ba] studied the problem of finding all tight surfaces that liein
a sphere, and later this led to the study of taut immersions by Carter and West
[CW1]. Notethatif p : M™ — R™ isatightimmersionand (M) iscontained
in the unit sphere S™ 1, then the Euclidean distance function fp and the height
function h,, have the same critical point theory because f, = 1 + ||p||* — 2h,.
Taut immersions are “essentially” the spherical tight immersions.

A non-degenerate smooth function f : M — Riscalled a perfect Morse
function if u(f) = > bi(M, F) for some field F'. If we restrict ourself to
the class of manifolds that satisfy the condition that v(M) = > b;(M, F) for
some field F', then an immersion ¢ : M — R™ istight if and only if every
non-degenerate height function h,, is perfect, and it istaut if and only if every
non-degenerate Euclidean distance function f, is perfect. There is a detailed
and beautiful theory of tight and taut immersions for which we refer the reader
to [CR2].

8.2. Taut immersionsin Hilbert space

In Theorem 7.1.13 we showed that the distance functions f, of PF sub-
manifolds in Hilbert space satisfy Condition C, so the concept of tautness can
be generalized easily to PF immersions.

8.2.1. Definition. A smooth function f : M — R on a Riemannian Hilbert
manifold M is called a Morse function if f is non-degenerate, bounded from
below, and satisfies Condition C.

For aMorse function f on M let

M, (f) ={z € M| f(z) <r}.

Thenit followsfrom Condition C that there are only finitely many critical points
of finM,.(f). Let

px(f,r) = the number of critical points of index k on M,.(f),
ﬁk(fa T, F) = dlm(Hk(MT(f)a F))a

for afield F'. Then the weak Morse inequalities gives

[Lk(f,r) > ﬁk(fﬂnvF)

for al r and F'.
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8.2.2. Definition. A Morse function f : M — R s perfect, if there existsa
field F' suchthat puy (f,7) = Bk (f,r, F') fordl r and k.
It follows from the standard Morse theory in part 11 that:

8.2.3. Theorem. Let f beaMorsefunction. Then f is perfect if and only if
there exists a field F' such that the induced map on the homology

is: Ho(M,.(f), F) — Ho(M, F)

of theinclusion of M,.(f) in M isinjective for all r.

8.2.4. Definition. Animmersed submanifold M of aHilbert spaceistaut if
M is proper Fredholm and every non-degenerate Euclidean distance function
fao on M isaperfect Morse function.

8.2.5. Remark. If M isproperly immersedin R" then the above definitionis
the same as section 8.1.

8.2.6. Remark. Itiseasytoseethat theunit sphere S*~! isataut submanifold
in R™. But the unit hypersphere .S of an infinite dimensional Hilbert spaceis
not taut. First, S is contractible, but the non-degenerate distance function f,,
has two critical points. Moreover S is not PF.

8.2.7. Example. We will see later that, given a ssmple compact connected
group G, the orbits of the gauge group H'(S', G) acting on the space of con-
nections H°(S', G) by gauge transformations as in section 5.8 are taut.

Let R(f) denotethe set of all regular valuesof f, and C'(f) denote the set
of all critical pointsof f. The fact that the restriction of the end point map Y
of M to the unit disk normal bundle is proper gives a uniform condition C for
the Euclidean distance functions as we see in the following two propositions:

8.2.8. Proposition. Let M be an immersed PF submanifold of V', and
a € V. Supposer < sand [r,s] C R(f,). Thenthereexistsd > 0 such that
if ||b—al| < dthen|r,s] C R(fp).

Proor. If not, then there exist sequences b,, in V' and x,, in M such
that x,, isacritical point of f;_ and

b, — a, 7 < ||z, —by] <s.

Itfollowsfrom Proposition 7.1.10that (x,, —b,,) € v(M),. . Sincetheendpoint
map Y of M restricted to the disk normal bundle of radius s is proper and
Y(xp, b, —xy) = b, — a, thereisasubsequence of x,, converging to a point
zoin M. Thenitiseasily seenthat r < ||xo — a| < s and z isacritica point
of f,,acontradiction. =
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8.2.9. Proposition. Let M be an immersed PF submanifold of V', and
a € V. Supposer < sand [r,s] C R(f,). Thenthereexist §; > 0, d > 0
suchthat if [|[b — al| < §; andx € M (fp) \ M.-(fp) then ||V fo(z)|| > d2.

PRrROOF. By Proposition8.2.8thereexistso > 0 suchthat [r, s] C R(f3)
if [|b — al| < 0. Suppose no such ¢; and d, exist. Then there exist sequences
b, in V and x,, in M such that b,, — a, x,, € M(fp,) \ M.(fp,), and
IV(fp,.)(@n)]| — 0. Then

Y(zn, —(xn —bn)") =z — (2, — bp)”
= bn + (xn - bn)Tan — Q,

and ||z, — b,|| < s. Since M is PF, z,, has a subsequence converging to a
critical point g of f, in M (f.) — M, (f.), acontradiction. =

8.2.10. Proposition. Let M be an immersed, taut submanifold of a Hilbert
spaceV,a € V,and r € R. Then the induced map on homology

is: Ho(M(fo), F) — Hy(M, F)
of theinclusion of M,.(f,) in M isinjective.

Proor. If a is anon-focal point (so f, is non-degenerate), then it
follows from the definition of tautness and Theorem 8.2.3 that ¢, isan injection.
Now suppose « is a focal point. If there is no critical value of f, in (r,r'],
then M,.(f,) is a deformation retract of M, (f,). So we may assume that r
isaregular value of f,, i.e, r € R(f,). Then there exists s > r such that
[r,s] € R(f,). Choose d; > 0 and 2 > 0 asin Proposition 8.2.9, and
e > 0 such that ¢ < min{d1, d2, (s —r)/5}. Since the set of non-focal
points of M in V' is open and dense, there exists a non-focal point b such
that ||b — a|| < e. Since f; is non-degenerate, it follows from the definition
of tautness that i, : H.(M(fy), F) — H.(M,F) isinjective for al t. So
it suffices to prove that M, (f,) is a deformation retract of M,.(f,). Since
€ < (s—r)/5, thereexist r, 72, s1 and so suchthat r; < s1, ro < s5 and

r<r;—e<s81+e<s 11 <rg—e€<8<8y+e<s.
From triangle inequality we have

MSQ(fb) - Mrg(fb) - M81(fa) - Mﬁ(fa) C M8<fb) - Mr(fb)-

Note that ||V fa(z)|| > b if © € My(fa) — M, (fa) and |V fo(z)]| > 02
if v € My(fp) — M, ( b)- Recall that Vf,(z) = (v — a)T and V fy(z) =
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(x — b)T. Sincee < &2, (a — b)T isthe shortest side of the triangle with three
sdes(z —a)?, (z —b)T and (a — b)T foral zin M, (f,) — M, (f.). Using
the cosine formulafor the triangle we have
202 — €2 - €2

2 2’
forxzinMs, (fo)— M, (f.). Hencethegradient flow of f, givesadeformation
retract of M, (f,) to My, (fy). If [r,s] C R(f), then M,.(f) isadeformation
retract of M, (f) foral ¢ € [r, s], which provesour claim. =

(Via(2), V fo(z)) >

8.2.11. Corollary. If M isconnected and ¢ : M — V isataut immersion
then ¢ is an embedding.

PRrROOF. Since M isPF, ¢ = Y| M x 0 isproper. Soit sufficesto prove
that p isonetoone. Supposep(p) = ¢(q) = a. If p # gthenthereexistse > 0
suchthat (0,¢) C R(f,) and p, ¢ arein two different connected components of
M.(f.). This contradicts to the fact that ig : Ho(M(fs), F) — Ho(M, F)
isinjective. =

8.2.12. Corollary. Suppose M isa connected taut submanifoldof V,a € V,
and let D, (a) denote the closed ball of radius r and center a in V..

(i) For any r € Rtheset M,.(f,) isconnected, or equivalently, M N D,.(a)
is connected.

(ii) If z, isanindex O critical point of f, then f,(z,) istheabsolute minimum
of f,; inparticular alocal minimumof f, isthe absolute minimum.

(iii) If z, isanisolate critical point of f, withindex0 and r, = f,(x,), then
M. (f.) ={z.},i.e,{z,} = M N D, (a).

ProoOF. By Proposition 8.2.10, the map
7:0 : HO(Mr(fa)aF) - HO(M7 F)

isinjective. Since Hy(M, F') = F, M,.(f,) is connected, which proves (i).

Next we prove (iii) for non-degenerate index O critical point. Let x, be a
non-degenerate index O critical point of f, and r, = f,(x,). Then thereisan
open neighborhood U of x, such that M, (f.) NU = {z,}. Since M, (f.)
is connected, M, (f,) = {z,}. In particular, r, is the absolute minimum of
fa i€,

|l —all = [lzo — all.

If x, is a degenerate critical point, then thereisv € v(M),, such that
a=1x,+ vand
Hess(fo,z0) =1 — A, > 0.
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Leta; =a+tvfor0 <t < 1. Then
Hess(fq,,z0) =1 —tA, > 0.

So x,, isanon-degenerate index 0 critical point of f,,. But we havejust shown
that
[ = aill = llzo — all (8.2.1)

foral z € M. Lettingt — 1in(8.2.1), weobtain (ii). =

8.3. Homology of isoparametric submanifolds

In this section we use Morse theory to calcul ate the homology of isopara-
metric submanifolds of Hilbert spaces and prove that they are taut.

Let f beaMorsefunctiononaHilbert manifold M, g acritical point of f of
index m. In Chapter 10 of Part || wedefineapair (IV, ) to be a Bott-Samelson
cyclefor f at ¢ if N isasmooth m-dimensional manifoldand ¢ : N — M isa
smooth map such that f o ¢ has a unique and non-degenerate maximum at ¥,
where o(yp) = q. (N, ) is R-orientable for aring R, if H,,,(N,R) = R.
We say f is of Bott-Samelson type with respect to R if every critical point of
f has an R-orientable Bott-Samelson cycle. Moreover if {g;| i € I} isthe set
of critical pointsof f and (IV;, ;) isan R-orientable Bott-Samelson cycle for
faq; fori € Ithen H,(N,R) is afree module over R generated by the
descending cells (). ([IV;]), which impliesthat f is of linking type, and f is
perfect.

8.3.1. Theorem. Let M be an isoparametric submanifold of the Hilbert
space V', and x a critical point of the Euclidean distance function f,. Then
(1) there exist a parallel normal field v on M and finitely many curvature
normals v; such that a = o + v(zo) and (v, v;) > 1,
(i) if
<U,UT> > 2 <U7U1> >1 > <U>Ur+1> > <U7UT‘|—2> > ...,
then

(1) B{Ei(xo)|i < r} isthe negative space of f at xy,
(2) (N, u,) isan R-orientiable Bott-Samelson cycle at z for f, where

NT = {(yla s 7y7“)|y1 € Sl($0)7y2 € SZ(yl)a s Yr € Sr(yr—l)};

U/T:NT' _)Ma u?"(ylv"'vy?") = Yr,
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and S;(x) istheleaf of F; through . Here R = Zifall m; > 1,and R = Z,
otherwise.

PRrOOF. Sincexgisacritical point of f,, by Proposition7.1.10a — x( €
v(M)z,. Letvbetheparallel normal fieldon M suchthatv(zg) = a—xo. Then
(i) follows form the fact that the shape operator A, iscompact, the eigenvalues
of A, are (v, v;), and V2 f,(20) = I — A(a—z0)-

For (ii) it suffices to prove the following three statements:
(@ yo = (x0, ..., xo) isthe unique maximum point of f o u,.

(b) d(u,)y, maps T'(N,),, isomorphically onto the negative space of f at
xXo.

(c) If dl m; > 1, then (N,., u,.) isZ-orientable.

To see (b), let N = N,., we note that IV is contained in the product of r
copies of M, TN, = @P{F;|i < r}, where F; = (0,,..., E;i(zo),...,0)
is contained in @{T'M,,|i < r} and d(u,),, maps F; isomorphicaly onto
El(l'o)

It followsfrom the definition of IV, that it isan iterated sphere bundle. The
homotopy exact sequence for thefibrationsimpliesthat if the fiber and the base
of afibration are simply connected then the total spaceisalso simply connected.
Hence by induction the iterated sphere bundle N, is simply connected, which
proves (C).

Statement () follows from the lemmabelow. =

8.3.2. Lemma. Weusethesame notation asin Theorem 8.3.1. Then for any
q = (y1,,.-.,Yr) in N, thereis a continuous piecewise smooth geodesic «,
in V' joining a to y, such that the length of ¢, is ||zp — a||, and ¢, is smooth if
andonly if ¢ = (o, ..., z0o).

PROOF. Let [xy] denote the line segment joining = and y in V. Let
{Zz} = EZ(Z‘O) N [aili()]. Then

l[azg] = [az1] U [z122] U ... [zr20]-
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L3

Leta; = (y; +v(ys)), and z; (i) € €;(y;) N [yia;]. Thenzy(1) = 2z, and
zj(j — 1) = z;(j). Sincey; € S;(y;—1) and z;(j — 1) = z;(j),
agq = [az1] U [21(1), 22(1)] N [22(2), 23(2)] U ... U [20(r), yr]
satisfies the properties of thelemma. =

8.3.3. Corollary. Let M be an immersed isoparametric submanifold in a
Hilbert space V' with multiplicities m;, and a € V a non-focal point of M.
Then

(i) f. is of Bott-Samelson type with respect to the ring R = Z, if all the
multiplicitiesm,; > 1, and with respect to R = Z, otherwise,

(i) M istaut.

It follows from Corollary 8.2.11 that:

8.34. Corallary. An immersed isoparametric submanifold of a Hilbert
space V' is embedded.

To obtain more precise information concerning the homology groups of
isoparametric submanifolds, we need to know the structure of the set of critical
pointsof f,. By The Morse Index Theorem (see Part I1) we have

8.3.5. Proposition. Let M C V beisoparametric, and IV its associated
Coxeter group. Leta € V, and let C'( f,) denote the set of critical pointsof f,,.
(i) Ifxg € C(fo) thenW -2 C C(f,), whereW -z isthe W-orbit through
xoonzg + v(M),,,
(i) If ¢ € C(f,,) thentheindex of f, at ¢ isthe sum of the m,;’s such that the
open line segment (g, a) joining ¢ to a meets 4;(q).

Let v, = x + v(M),. Then the closure of a connected component of
v \U{¥i(q)|i € I} isaWeyl chamber for the Coxeter group W -action on v,.
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In the following we let A, denote the Weyl chamber of 177 on v, containing g.
As a consequence of Proposition 8.3.5 and Corollary 8.2.12, we have

8.3.6. Proposition.  Suppose M isisoparametric in a Hilbert space and let
q € M. Let A, bethe Weyl chamber inv, = (¢ + v(M)q) containing ¢, and
a € A,
Then:

() g isacritical point of f, with index 0,

(ii) fa(q) isthe absolute minimum of f,,

(iii) if @ is non-focal with respect to ¢, then £ (f.(q)) = {q},

(i) if a isa focal point with respect to ¢ and a lies on the smplex o of A,
then £ 1(f.(q)) = Sy.0 (asin the Sice Theorem 6.5.9).

8.3.7. Theorem. Let M be an isoparametric submanifold of V', and a €
vq Nvy . Then a isnon-focal with respect to ¢ if and only if a is non-focal with
respecttoq’, and ¢’ € W - q.

PrOOF. Therearep €¢ W-qgandp’ € W - ¢ suchthata € A, and
a € A, . By Proposition 8.3.5 (ii), both p and p’ are critical points of f, with
index 0. So by Proposition 8.3.6, f,(p) = f.(p) is the absolute minimum of
fa- If a isnon-focal with respect to ¢ then by Proposition 8.3.6 (iii), we have
p = p’ and a isnon-focal withrespecttop’. u

8.3.8. Corollary. Let M C V beisoparametric, W its associated Coxeter
group. If a € V isnon-focal with respect to ¢ in M, then C(f,) = W - q.

8.39. Corollary. Let M C V beisoparametric. Then H.(M,R)) can
be computed explicitly in terms of the associated Coxeter group W and its
multiplicitiesm,;. Here R isZ if all m; > 1 andisZ, otherwise.

8.3.10. Corollary. Let M C R"** peisoparametric. Then
Zrank(Hi(M, R)) = |W]|,

the order of .

8.3.11. Corollary. Let M C V beisoparametric. A pointa € V isnon-
focal with respect to ¢ € M if and only if a is a regular point with respect to
the W-action on v,.
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8.3.12. Corallary. Let M C V be isoparametric. If f, has one non-
degenerate critical point then f, is non-degenerate, or equivalently ifa € v, is
non-focal with respect to ¢ then a is non-focal with respect to M.

Leta € V. Since f, isbounded from below and satisfies condition C on
M, f, assumesits minimum, say at g. Soa € v, i.e,

8.3.13. Proposition. Let M C V beisoparametric,andY : v(M) — V
the endpoint map. Then Y (v(M)) = V.

8.4. Rank 2 isoparametric submanifoldsin R™

Inthissectionwewill apply theresultswe have devel oped for isoparametric
submanifolds of arbitrary codimension to arank 2 isoparametric submanifold
M™ of R"*2. Because of Corollaries 6.3.12 and 6.3.11, we may assume that
M isahypersurface of S**1,

Let X : M™ — S*T1 C R"*2 beisoparametric, and én+1 theunit normal
field of M in S**1. Suppose M has p distinct principal curvatures Ay, . . ., Ap
as ahypersurface of S**1 with multiplicities m,. Then

€a = €nt1, €3 =X

isaparallel normal frame on M, and the reflection hyperplanes ¢;(¢) on v, =
q+v(M), (weuseq astheorigin, e, (q) and eg(q) arethetwo axes) are given
by the equations:

Niza —23=1, 1 <i<p.

The Coxeter group W associated to M is generated by reflectionsin ;. By the
classification of rank 2 Coxeter groups, W is the Dihedral group of order 2p.
So we may assume that

 — 1
)\i = cot <61 —|— (Z )7T
p

>,1§i§@

for some 6, where —7/p < 6, < 0. Thisfact was proved by Cartan ([Ca3]).
Let R; denote thereflections of v, in ¢;(q). It iseasily seen that

Riy1(4;) = lita,

ifwelet/,,; = ¢; for1 <i < p. By Theorem 6.3.2, we obtain the following

result of MUnzner:
mp =m3g=...,

Mo =My = ....
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In particular, if p is odd then all the multiplicities are equal. So the possi-
ble marked Dynkin diagrams for a rank 2 isoparametric submanifold of the
Euclidean space are

ZQ X 22 o )
mi1 m2
A2 o0—oO
ma mo
BQ c—=o°
ma mo
Gy —>
ma mo

Note that the intersection of ¢;(¢) and the normal geodesic circle of M in
S* 1 at g has exactly two points, which will be denoted by z; and y;, i.e.,

x; = cos 0; ¢ + sin 0; e, (q),
y; = cos(m + 60;) q + sin(w + 0;) en(q),

where; = 61 + @.

/Y2

Let A, denote the Weyl chamber of W on v, containing q. Then the
intersection of A, and the normal geodesic circle of M in S™™! a ¢ is the
arc joining z; to y,. Let M; denote the parallel submanifold of A through
cos t g+ sin t e, (q). Then

M| —m/p+6r <t <o} =5
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Note that M; is diffeomorphic to M and is an embedded isoparametric hy-
persurface of S"*1 if —7/p + 6, < t < 0;. And thefocal set I" of M in
S"*! has exactly two sheets, M; = My, and My = M(_, /,+0,), SO they are
also called the focal submanifolds of M. The dimension of M; isn — m; for
i = 1,2. Let v; bethe paralel normal fieldson M suchthat z; = g + v1(q),
Yp = q + v2(q). Then M; = M, the paralel submanifold. So by Proposition
6.5.1, m; : M — M, defined by m;(x) = = + v;(z) isafibration and M isa
S™i-bundle over M;.

Let B, bethenormal disk bundleof radiusr; of M, inS*+!, wherer; = 6,
andro =7/p—6;. SO

B; = {cos t x + sin tv(z) | [t| < 74, vis normal to M in S*T1},

and OB, = M. Next we clam that B; U B, = S*"!l. To see this, let
a € S*"1. Since M is compact, f, assumes minimum, say at zo. S0 a =
cost xg + sint e, () for somet. Because x isthe minimum of f,, a must
liein the Weyl chamber A, of W onv,,,i.e, —ro <t <r;. Soa € By if
0<t<rianda € By if —ry <t < 0. This proves the following results of
Munzner [MU1]:

By UB, =S",
8B, = 8By = By N By = M,
B;is a (m; + 1) — disk bundle over M;.

Using thisdecomposition of S* ! astwo disk bundlesand resultsfrom algebraic
topology, Munzner [M12] proved that

Zrank(Hi(M)) = 2p,
which is the same as our result in Corollary 8.3.10, because |WW| = 2p. He
also obtained the explicit conomology ring structure of H*(M, Z5). Using the
cohomology ring structure, Minzner proved the following:

8.4.1. Theorem. If M is an isoparametric hypersurface of S**! with p
distinct principal curvatures, then p must be 1,2, 3,4 or 6.

Next we state some restrictions on the possible multiplicitiesm;. Thefirst
result of thistype was proved by E. Cartan:

8.4.2. Theorem. If M™isanisoparametric hypersurfaceof S** with three
distinct principal curvatures, thenm; = ms = m € {1, 2,4, 8}.

Using delicate topological arguments, Minzner [MU2] and Abresch [ADb]
obtained restrictions on the m;’s for the case of p = 4 and p = 6. First we
make a definition:
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8.4.3. Definition. A pair of integers (m1, m2) is said to satisfy condition (*)
if one of the following hold:
(a) 2% divides (my + ma + 1), where 2 = min{2°| m; < 27, o € N},
(b) if m; isapower of 2, then 2m; divides (mq+1) or3my = 2(mg+1).

8.4.4. Theorem. Suppose M™ is isoparametric in S*1 with p distinct
principal curvatures.

(i) If p =4 and my < my, then (mq, mo) must satisfy condition (*).

(i) If p = 6, thenmy = mo € {1,2}.

We will omit the difficult proof of these results and instead refer the reader
to [MU2] and [Ab].
As consequence of Theorem 8.4.1, we have:

8.4.5. Theorem. If M isarank 2 isoparametric submanifold of Euclidean
space, then the Coxeter group W associated to M is crystallographic, i.e.,
W = Al X Al, AQ, BQ, or G2.

8.4.6. Theorem. If M isanirreducible rank 2 isoparametric submanifold
of Euclidean space, then the marked Dynkin diagram associated to M must be
one of the following:

Ao o—o0 me{1,2,4,8}
m m

By o——o0 (m1,mso) satisfies (*)
mi mo

G2 ==23) me{1,2}
m m

8.5. Paralld foliations

In section 7.2 we noted that most results of Chapter 6 work for infinite
dimensional isoparametric submanifolds. Although the proof of the existence
of parallel foliation for finite dimensional isoparametric submanifolds does not
work in the infinite dimensional case, the topological results of section 8.3 lead
to the existence of parallel foliation.
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Let M be aPF submanifold of V' with flat normal bundle, and Y the end
point map of M. In genera, the parallel set,

M, ={Y(v(x))=x+v(z) |z e M},

defined by a parallel normal field v, may be a singular set, and 7 = {M,, |
vis a parallel normal field on M } neednotfoliate V. Themainresult of this
sectionisthat if M isisoparametric, then each M, isan embedded submanifold
of V and F gives an orbit-like singular foliationon V.

Inwhat follows M isarank k isoparametric submanifold of aHilbert space
V,vg =q+v(M),and A, isthe Weyl chamber of W on v, containing q.

8.5.1. Proposition. M Ny, =W -q.

Proor. lItiseasily seenthat W -q C v,. Now supposethat b € M Nuv,.
Then b € v, N v, But b is non-focal with respect to b, so it follows from
Theorem 8.3.7that wehaveb € W -q. »

8.5.2. Proposition. Supposec isasimplexof A, and o’ isasimplexof A.
Ifono’ #(theno = o/, and thedlices S, , and S/, are equal.

PROOF. Supposea € oNo’. Thengand ¢’ arecritical pointsof f, with
index zero, nullitiesmy, », my o+, and critical submanifolds S, , Sy o Of fq
at g and ¢’ respectively. Soit followsfrom Proposition8.3.6that S, , = Sy .
It then follows from the Slice Theorem 6.5.9 that wehaveo = ¢o/. »

8.5.3. Proposition.  Let o be a simplex of a Weyl chamber inv,, o € W,
and S, . theslice asin Theorem 6.5.9. Then ¢(S;.o) = Sy(q),0-

Proor. Using Theorem 6.5.9, we seethat S, ,, isthe leaf of the distri-
bution P{E;| j € I(q,0)} through ¢q. But both ¢(S, ) and S, (4),, are
the leaves of the distribution B{E;| j € I(v(q),0)} through ¢(q). So

P(Sq,0) = Sp(g),0-

8.5.4. Theorem. Let M be a rank k isoparametric submanifold of V,
o a simplex of A, of dimension less than &, and @ € 0. Then f, is non-
degenerate in the sense of Bott, and the set C'(f,) of critical points of f, is

U{Sz.0lx € W -q}.

Proor. Letxz € W-q. Thenzisacritical pointof f, withnullity m,, ,
and S, . isthe critical submanifold of f, through . Hence S, , C C(f,).
Conversdly, if y € C(f,) thena € v,. By Theorem 8.3.7, a isafoca point
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with respect to . sothereexistsp € W suchthat o~ (y) = 1o, and asimplex
o’ in the Weyl chamber A, on v,, suchthat a € ¢’. Then it follows from
Proposition 8.5.2that 0 = ¢’ and S, , = S, ,». Thuswe have

90<qu0> = S@(Q)J = 90(51/070) = S<p(yo)70 = Sy @

8.5.5. Theorem. Let M be an isoparametric submanifold in V', ¢ € M,
and A, the Weyl chamber of W on v, containing ¢. Let v bein v(M),, © the
parallel normal vector field on M determined by ©(q) = v, and M, theparallel
submanifold M3, i.e.,

M, ={z+v(x)|z € M}.

Then:
(i)ifv # w,and ¢ + v and ¢ + w arein A, then M,, and M, aredigjoint,
(ii) givenany a € V thereexistsauniquev € v(M), suchthatg +v € A,
anda € M,,
(ii1) each M, isan embedded submanifold of V.

PROOF. Suppose (q +v), (¢ + w) arein A, and M, N M,, # (. Let
a € M, N M, thenthereexist x,y € M suchthata = =z +v(x) = y + w(y).
Since a € A, and v, w are paralel, (v,v;) and (w,v;) are constant. So
a € Ay anda € Ay, which imply that  and y are critical points of f,
with index 0. If a is non-foca then x = y, so by Proposition 8.3.6 we have
v = w. If aisfoca (suppose a liesin the smplex o of A,) then the two
critical submanifolds S, , and S, , are equal. In particular, y € S; . Using
the same notation as in the Slice Theorem 6.5.9, we note that the slice S, , is
afinite dimensional isoparametric submanifold in z + (o) C a + v(M,),.
Let v = uy + ug, Where u; is the orthogona projection of v along V(o).
Then S, is contained in the sphere of radius ||u || and centered at © + u;.
Soy + @1 (y) = x + uy. Since V(o) isperpendicular to S, o, U2(y) = us.
Thereforewehavey + 0(y) = z + 0(z) = a = y + w(y), which implies that
v=w

To prove (ii), we note that since f,, is bounded from below and satisfies
condition C, there exists zp € M such that f,(xo) is the minimum. Then
a € A,,,sothereexistsaparalel normal field o such that o(zg) = a — .

If x,y € M, andx + v(z) = y+ 0(y) = b, then both x and y are critical
points of f; with index 0. Then, by Proposition 8.3.6 (iii), fi(x) = f»(y) is
the absolute minimum of f, and if b is non-focal then, by 8.3.6 (ii), x = y.
If bisafocal point of M, then a isafocal point with respect to both x and y
by Theorem 8.3.7. Suppose a liesin asimplex o of /A,. Then by Proposition
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8.3.6 again, y € N, ,. Since S, , isisoparametricin n(o), it isan embedded
submanifold,i.e,z =y. =

8.5.6. Corollary. Let M beanisoparametric submanifold of V andq € M.
Then F = {M,| ¢ + v € A} defines an orbit-like singular foliation on V/,
which will be called the isoparametric foliation of M. The leaf space of F is
isomor phic to the orbit space v, /IV.

85.7. Coralary. Ifa € o C A,anda = g+ v, then the isoparametric
foliation of S, , in (a + v(My),) iIS{M, N (a +v(My)a)| M., € F}.

8.6. Convexity theorem

A well-known theorem of Schur ([Su]) can be stated asfollows: Let M be
the set of n x n Hermitian matriceswith eigenvaluesa., . .., a,,andu : M —
R" the map defined by u((zi;)) = (11,...,Znn). Thenu(M) is contained
in the convex hull of S,, - a, where S,, isthe symmetric group acting on R™ by
permuting the coordinates. Conversely, A. Horn ([Hr]) showed that the convex
hull of S,, - a iscontained in u(M). Hence we have

8.6.1. Theorem. (M) = cvx(S, - a), theconvex hull of S, - a .

Note that Theorem 8.6.1 can be viewed as a theorem about a certain sym-
metric space, because M is an orbit of the isotropy representation of the sym-
metric space SL(n,C)/ SU(n, '), and u is the orthogona projection onto a
maximal abelian subspace. B. Kostant ([Ks]) generalized thisto any symmetric
space; hisresult is:

8.6.2. Theorem. Let G/K be a symmetric space, G = K + P the cor-
responding decomposition of the Lie algebra, 7 a maximal abelian subspace
of P, W = N(7)/Z(T) the associated Weyl group of G/K acting on 7,
and u : P — 7T thelinear orthogonal projection onto 7. Let M be an or-
bit of the isotropy representation of G/K through z, i.e, M = Kz. Then
u(M) = cvx(W - 2).

Theisotropy action of the compact symmetric space G x G/G isjust the
adjoint action of G on G. Moreover, if we identify G to its dual G* via the
Killing form, then these orbits have a natural symplectic structure. In this case,
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the map u in Theorem 8.6.2 is the moment map. Recently, Theorem 8.6.2 has
been generalized in the framework of symplectic geometry by Atiyah ([At]) and
independently by Guillemin and Sternberg ([GS)) to the following:

8.6.3. Theorem. Let M be a compact connected symplectic manifold with
a symplectic action of atorus 7', and f : M — 7* the moment map. Then
f(M) isa convex polyhedron.

The orbitsthat occur in Kostant’s theorem 8.6.2, are isoparametric. More-
over, aswe shall now seg, it turns out that the convexity result follows just from
this geometric condition of being isoparametric. Sincethere areinfinitely many
families of rank 2 isoparametric submanifolds that are not orbits of any linear
orthogonal representation, the Riemannian geometric proof of Theorem 8.6.2
gives amore general result [Te3].

8.6.4. Main Theorem. Let M" C S**¢=1 C R"** be isoparametric,
q € M, and W the associated Weyl group of M. Let P denote the orthogonal
projection of R"** onto the normal planev, = ¢+v(M),, andu = P|M the
restriction of P to M. Then u(M) = cvx(W - q), the convex hull of W - q.

Aswe said above, our main tool for proving this is Riemannian geometry.
However, the basic idea of the proof goes back to Atiyah ([At]), and Guillemin-
Sternberg ([GS]). Although thereisno sympl ectic torusaction around, the height
function of M plays the role of the Hamiltonian function in their symplectic
proofs. In section 8.3, we showed that M istaut (Corollary 8.3.3), i.e., every
non-degenerate Euclidean distance function f,, on M isperfect. Because M C
S*++=1 the height function h, and —1/2f, differ by aconstant, i.e,

fo = —2hs + (1 + [la]?).

In particular f, and h, have the same critical point theory. Using our detailed
knowledge of the Morse theory of these height functions, Theorem 8.6.4 can be
proved rather easily. It seems that tautness and convexity are closely related,
however, the precise relation is not yet clear.

Henceforth we assume that M/ C S*T*~1 C R™"** isisoparametric, W
isits Weyl group, and we use the same notations as in Chapter 6. In particular,
forz € M,welet A\, denotetheWeyl chamberonv,, = x+v (M), containing
x. First we recall following results concerning the height functions.

8.6.5. Theorem. Leta € R™* bea fixed non-zero vector, h, : M — Rthe
associated height function, i.e., h,(z) = (z,a), and let C(h,) denote the set
of all critical pointsof h,,.

(i) z € C(hg) ifandonlyifa € v,.
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(ii) If zg isanindex O critical of h,, thenb = h, () istheabsolute minimum
value of h, on M and h; 1 (b) is connected. Moreover,
(1) a € Dy,
(2)ifa € o,asimplexof A, then h 1 (b) = S, » (theslicethrough z
with respect to o).
(iii) If x € C(h,) and a isregular with respect to the 1¥-action on v, then
hq isnon-degenerate and C'(h,) = W - .
(iv) If a isW-singular, then h,, is non-degenerate in the sense of Bott ([ Bt]).
More specifically, if z° € C(h,) isa minimum and « lies on the simplex o of
Ao, then

C(ha) = | J{Seol z € W-2°}.

8.6.6. Lemma. WeusethesamenotationasinTheorem8.6.4. Letu = P|M,
the restriction of P to M, and C' the set of all singular points of . Then C
is the union of all slices S, , for z in W - ¢ and o a 1-simplex of some Weyl
chamber of v,.

Proor. We may assume that v, = R". Letty,...,t; bethe standard
base of R*. Thenu = (u1,...,ux), where u;(z) = hy, (z) = (x,t;). Itis
easy to see that the following statements are equivalent:

(1) rank(du,) < k.
(2) duy(x), ..., du(x) arelinearly dependent.
(3) there exists anon-zero vector a = (aq, . . . , aj) such that

ardus (z) + ... + agdug(x) = 0.

(4) x isacritical point of some height function h,,.
Then the lemmafollows from Theorem 8.5.4. »

8.6.7. Proof of theMain Theorem. Wewill useinduction on & to show that:
(*) u(M) = cvx(W - q),if M isisoparametric of rank k.

If k = 1, then M is a standard sphere of R"*!, so u(M) is the line segment
joining q to —q. Suppose (*) is true when the codimension is less than &, and
M™ isfull and isoparametricin R"**. Then wewant to show that u(M) = D,
where D = cvx(W - ¢). We divide our proof into five steps.

(i) Let C denote the set of singular points of u. Then u(C) is the union
of finitely many (k — 1)-polyhedra, and 0D C u(C') C D. Soin particular,
D\ u(C) isopen.
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To see this, we note by Theorem 6.5.9 that if o a 1-ssmplex on v, and
x € W -qthenthedice S, , isarank k£ — 1 isoparametric submanifold. So by
theinduction hypothesis, u(S; ) isa(k—1)-polyhedron. Thenusing Theorem
8.5.4, we have

u(C) = J{P(Ss0) [z € W -4,

o a 1 — simplexof some Weyl chamber of v,}.

But it isaso easy to see that
oD = U{P(Sm,g)| x €W -q, ocal—simplex of A,}.

(i) O(u(M)) C u(C). This follows from the Inverse function theorem,
because the image of aregular point of w isin the interior of u(M).

(iii) u(M) C D. Thisfollowsfrom the fact that u(C') C D.

(iv) If U; isaconnected component of D \ u(C'), then either U; C u(M),
or U; Nu(M) = (). To provethis, we proceed asfollows: Suppose U; Nu (M )°
isanon-empty proper subset of U;, whereu (M )° denotestheinterior of w(M).
Then thereisasequencey,, € U; Nu(M)® such that y,, convergesto y, which
isnotin U; Nu(M)°. Since u(M) iscompact, y € u(M). Using step (ii),
we have 9(u(M)) C u(C). But by definition of U;, U; N u(C) = (), so we
concludethat y isaregular value of u, hencey € U; Nu (M), acontradiction.

(V) U; C u(M) foral i. Suppose not, then we may assume Uy Nu(M) =
(). Using step (i), we know that OU; isthe union of (k — 1)-polyhedra. Let u
bea (k — 1)-face of U7, and t the outward unit normal of U, at . Then by
Euclidean geometry the height function h, on M haslocal minimum value ¢y on
1, hence by Proposition 8.3.6, ¢ is the absolute minimum of h; and x C 0D.
But by Euclidean geometry ;» C 90D impliesthat ¢y is aso aloca maximum
value of h; hence the maximum value of h; on M, and hence M is contained
in the hyperplane (z, t) = ¢q, which contradicts the fact that M isfull.
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This completes the proof of (*). =

If z € v, is W-regular, then the leaf M, of the parallel foliation of M
through z is isoparametric of codimension k£ and v(M.),. = v(M),. Hence
(*) implies that P(M,) = cvx(W - z). If z € v, is W-singular, then we
may assume that M, = M, for a parallel normal field v on M, and Mj, is
isoparametricfor all 0 < t < 1 (or equivaently that ¢ + tv(q) is W -regular for
al 0 <t < 1). We define the following smooth map

F:M x[0,1] — R, by F(z,t) = P(x + tv(z)).

Letui(z) = F(x,t),thenuy (M) = P(My,). By (*), P(My,) = cvx(W-(¢+
tv(q)))foral0 <t < 1. Butu; — u; uniformly ast — 1, soitsimageu, (M)
converges in the Hausdorff topology to u, (M). But g + tv(q) converges to
q+v(q) = z,%0 P(My,) convergestotheconvex hull of W-(¢+v(q)) = Wz,
hence we obtain

8.6.8. Theorem. With the same assumption as in Theorem 8.6.4. Let
z € vg, and M, the leaf of the parallel foliation of A/ through z. Then
P(M,) = cvx(W - 2).

8.7. Marked Dynkin Diagramsfor |soparametric Submanifolds

In this section we determine the possible marked Dynkin diagramsfor both
the finite and infinite dimensional isoparametric submanifolds.

Let M bearank k irreducibleisoparametric submanifold in aHilbert space
V,{¥;| i € I} thefoca hyperplanes, {v;| i € I} the curvature normals, m, the
corresponding multiplicities, and W the associated Coxeter group.

(1) If V isof finite dimension, then we may assume that /4, ..., ¢, form a
simple root system for 1, and the marked Dynkin diagram has & vertices (one
foreach ¢;,1 < i < k) suchthat the i*" vertex is marked with multiplicities m;
and there are a(g) edges joined the i*" and j*"* verticesif the angle between /;
and/; ism/g, wherea(g) = g—2if1 < g < 4and a(6) = 3. Sothepossible
marked Dynkin diagram for rank & finite dimensional irreducible isoparametric
submanifolds are:

Ap o—o0---0—o0
ma mo my
By o——0--c—Do

ma mo mig
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my
Dy o— 0 @—I—@
mi meo mrg—1
my
EL o0—0 - I—o—o k=6,7,8
mi ma mg—1

F4 oO——Cc—0—oO0
ma mo ms may
Go =53
mi ma

(2) If V isan infinite dimensional Hilbert space, then we may assume that
ly,..., L1 form asimple root system for W, and the marked Dynkin dia-
gram has k + 1 vertices (one for each 4;, 1 < i < k + 1); the i*" vertex is
marked with the multiplicity m;. There are a(g) edges joining the i*" and
5t vertices if the angle between ¢; and ¢;ism/g with g > 1, and there are
infinitely many edges joining i*" and ;" vertices if ¢; is parallel to ¢;. So
using the classification of the affine Wey! groups, we can easily write down the
possible marked Dynkin diagrams for rank £ infinite dimensional irreducible
isoparametric submanifolds.

Letg € M,and v, = ¢+ v(M),. Giveni # j € I, suppose ¢; is
not parallel to ¢; and the angle between ¢; and ¢; is7/g. Then there exists a
unique (k — 2)-dimensional simplex o of the chamber A on v, containing ¢
such that o C ¢;(¢) N ¢;(q). By the Slice Theorem, 6.5.9, the dlice S, , isa
finite dimensional rank 2 isoparametric submanifold with the Dihedral group
of 2g elements as its Coxeter group, and m;, m; its multiplicities. So use the
classification of Coxeter groupsand theresultsin section 8.4 of Cartan, Munzner,
and Abresch on rank 2 finite dimensional case, we obtain some immediate
restrictions of the possible marked Dynkin diagrams for rank & isoparametric
submanifolds of Hilbert spaces. In particular, we have

8.7.1. Theorem. If M™ isisoparametricin R"**, then the angle between
any two focal hyperplanes ¢; and ¢; isw/g for some g € {2, 3,4,6}.

8.7.2. Corollary. If M™isanirreduciblerank k isoparametric submanifold
in R" % then the associated Coxeter group W of M isanirreducible Weyl (or
crystallographic) group.
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8.7.3. Proposition. There are at most two distinct multiplicities for an
irreducible isoparametric submanifolds M of V.

Proor. Iftheit® and (i 1)!" vertices of the Dynkin diagram arejoined
by one edge, then by Theorem 8.4.2, m; = m,,.1. But eachirreducible Dynkin
graph has at most one i, such that the i* and (i + 1)*" vertices are joined by
more than one edge. So theresult follows. =

8.7.4. Theorem. Let M™ bearank k isoparametric submanifold in R* .
If all the multiplicities are even, then they are all equal to an integer m, where
m € {2,4,8}.

Proor. Iftheit and (i 4 1)!" vertices of the Dynkin diagram arejoined
by two or four edges, then by Theorem 8.4.5, m; = m;+1 = 2. u

To obtain further such restrictions we need the more information on the
cohomology ring of M. The details can befoundin [HPT2]. Here we will only
state the results without proof.

8.7.5. Theorem. The possible marked Dynkin diagrams of irreducible rank
k > 3 finite dimensional isoparametric submanifolds are as follows:

Ak: o O +++O—0 me{1,2,4}
m m m

Bk O———O0:++ OC—o (m1,mz2) satisfies (x) below.
mq mq ma mo

m
Dk} O——O - O—I—Q m6{1,2,4}
m m m
m
Ek O—O - I—O—O m€{1,2,4} k:67778
m m m

Fy oO—Cc—o0—o0 mi1=ms=2 or mi1=1, m2€{1,2,4,8}

Thepair (m1, mo) satisfies(*) if it satisfiesone of thefollowing conditions:
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(1) m1 = 1, my isarbitrary,

(2Qdmy1 =2, mg=20r2r +1,

3y m; =4, me = 1,5,0r 4r 4 3,

WDEk=3 m =8 mo=1,3,7,11,0r 8 + 7.

Asaconsequence of Theorem 8.7.5, Theorem 8.4.4 and the Slice Theorem
6.5.9, we have:

8.7.6. Theorem. The possible marked Dynkin diagrams of irreducible rank
k > 3 infinite dimensional isoparametric submanifolds are as follows:

Ay o—= o
ma mao
m
Ay 400\—0 me{1,2,4}
m m m
BZ o—Oo——o0 (m1,m2), (ma,mgz) satisfy (*).
mq mo ms3
m
Bk o I O+ O—O (m,ml) satisfies (*)
m m m m my
Cy, o—0 O+ O o—o0 (m,m1), (m,mq) satisfy (x).
mi m m m m mo
m m
Dy o I o -0 I 0 meq{1,2,4}
m m m m m m
m
{m
E6 o o e 0 me{1,2,4}
m m m m m

m
E7 O O O T O O o) m6{1,2,4}
m
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me{1,2,4}

mi=mso=2 or

Fy o0—0—o—=on 0 mo=1,m;€{1,2,4} or
mi mi o mz M2 m1=1,m2€{1,2,4,8}
Gy o——o—o me{1,2,4}
m m m

Let G/K be arank k symmetric space, G = K + P, A the maximal
abelian subalgebra contained in P, and ¢ € A aregular point with respect
to the isotropy action K on P. Then M = Kgq isaprincipa orbit, and is a
rank k isoparametric submanifold of P. The Weyl group associated to M as
an isoparametric submanifold is the standard Weyl group associated to G/ K,
e, W=N(A)/Z(A). If z; € £;(q) and z; lieson a (k — 1)-simplex, then
m; = dim(M) —dim(Kz;). Itisshownin[PT2] that these principal orbitsare
the only homogeneous isoparametric submanifolds (i.e., a submanifold which
is both an orbit of an orthogonal action and is isoparametric). So from the
classification of symmetric spaces, we have (for details see [HPT2))

8.7.7. Theorem. Themarked Dynkindiagramsfor rank k, irreducible, finite
dimensional, homogeneous isoparametric submanifolds are the following:

Ay o—o me{1,2,4,8}
m m
Ay, O0—0 -+ 0—o0 me{1,2,4}
m m m
By, O——o0 -+ O—Do (m1,ms2) satisfies (*)

mq mq m1q ma

me{1,2}

EL O—o0 - me{1,2} k=6,7,8

O—T—Q

m m m
HI‘L—O—Q

m
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F4 oO—O0—0—o0 mi=mo=2 or m1=1, my€{1,2,4,8}
mi mi ma2 ma2

GQ [o==3) me{1,2}
m m

The pair (my, m2) satisfies (*) in all of the following cases:
(1) m1 = 1, mg isarbitrary,
2Qmi=2,my=20r2m+1,

B mi=4,m9=1,54m + 3,
(4) mi1 = 8, mo = 1,
(5)k:2,m1 :6,m2 =0.

8.7.8. Corollary. The set of multiplicities (m, m2) of homogeneous,
isoparametric, finite dimensional submanifolds with B> as its Coxeter groups
IS

{(1,m), (2,2m + 1), (4,4m + 3), (9,6), (4,5), (2,2)}.

8.7.9. Open problems. If we compare Theorem 8.7.5 and 8.7.7, it is natural
to pose the following problems:

(1) Isit possible to have an irreducible, rank 3, finite dimensional isoparametric
submanifold, whose marked Dynkin diagram is the following?

(It would be interesting if such an example does exist, however we expect that
most likely it does not. Of course a negative answer to this problem would also
imply the non-existence of marked Dynkin diagrams with uniform multiplicity
4 of Dy-type, k > 5 or Ey-type, k = 6,7, 8.

(2) Isit possible to have an isoparametric submanifold whose marked Dynkin
diagramis of the following type withm > 1:

B3 o0—oc—o
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(3) Let M™ C R*** beanirreducible isoparametric submanifold with uniform
multiplicities. Isit necessarily homogeneous ?

If the answer to problem 3 is affirmative and if the answers to problem 1
and 2 are both negative, then the remaining fundamental problem would be:

(4) Arethere examples of non-homogeneousirreducibleisoparametric subman-
ifoldsof rank k& > 3 ?

It follows from section 6.4 that if n = 2(my +my+1),and f : R® — R
is a homogeneous polynomial of degree 4 such that

Af(x) = 8(mg —ma) [lz|?, [V f(2)]* =16 ||z]°, (8.7.1)

then the polynomial map = — (|z|?, f(x)) is isoparametric and its regular
levels are isoparametric submanifolds of R™ 2 with

B2 cC—o
ma mo

as its marked Dynkin diagram, i.e,, By is the associated Weyl group with
(m1, m2) asmultiplicities. Solving (8.7.1), Ozeki and Takeuchi found the first
two families of non-homogeneous rank 2 examples. In fact, they constructed
the isoparametric polynomial explicitly asfollows:

8.7.10. Examples. (Ozeki-Takeuchi [OT1,2]) Let (m1, mo) = (3,4r) or
(7,8r), F = H or Ca (the quarternions or Cayley numbers) for m; = 3 or 7
respectively, and let n = 2(my + mo + 2). Let u — u denote the canonical
involution of F'. Then

1
(u,v) = 5(1&7 + vu)
defines an inner product on F', that gives an inner product on F"". We let
fO - R" = F2(r+1) — piHr o pltr R,
folu,v) = 4(|luv"|* — (u,0)?) + (Jur]|* = o1 ]|* + 2(uo, v0))?,
where u = (UO,Ul), v = (Uo,vl) and ug,vg € F,u,v1 € F". Then
Fu,v) = ([ull® + [[0]*)? = 2fo(u, v)

satisfies (8.7.1). So theintersection of aregular level of f and S* ! isisopara-
metric with B, asthe associated Weyl group and (3, 4r) or (7, 8r) asmultiplic-
ities. These examples correspond to (3, 4r) and (7, 8r) are non-homogeneous.
But there is also a homogeneous example with Bs asits Weyl group and (3, 4)
as its multiplicities. So the marked Dynkin diagram does not characterize an
isoparametric submanifold.
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8.7.11. Examples. Another family of non-homogeneousrank 2 isoparametric
examplesis constructed from the representations of the Clifford algebraC'¢™+1
by Ferus, Karcher and Munzner (see [FKM] for detail). It is known from
representation theory that every irreducible representation space of C¢™*1! is
of even dimension, and it isgiven by a“Clifford system” (P, ..., P,,) onR*",
i.e, the P/s arein SO(2r) and satisfy

P,P; + P;P, = 25;;1d.

Let f : R*" — R bedefined by

m

(@) = |t =Y (Pilx), ).

1=0

Then f satisfies (8.7.1) withm; = mandmo =r —mq — 1. If my,mo > 0,
then the regular levels of the map = — (||z]|?, f(z)) are isoparametric with
Coxeter group B, and multiplicities (mq, m2). Most of these examples are
non-homogeneous.

8.7.12. Remark. The classification of isoparametric submanifoldsis still far
from being solved. For example we do not know

(1) what the set of the marked Dynkin diagramsfor rank 2 finite dimensional
isoparametric submanifoldsis,

(i1) what the rank £ homogeneous infinite dimensional isoparametric sub-
manifolds are.
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Chapter 9
Elementary Critical Point Theory

The essence of Morse Theory is a collection of theorems describing the
intimate relationship between the topology of a manifold and the critical point
structure of real valued functions on the manifold. This body of theorems
has over and over again proved itself to be one of the most powerful and far-
reaching toolsavailablefor advancing our understanding of differential topology
and analysis. But agood mathematical theory is more than just a collection of
theorems; in addition it consists of atool box of related conceptualizations and
techniques that have been gradually built up to help understand some circle of
mathematical problems. Morse Theory is no exception, and its basic concepts
and constructions have an unusual appeal derived from an underlying geometric
naturality, simplicity, and elegance. In these lectures we will cover some of the
more important theorems and applications of Morse Theory and, beyond that,
try to give afeeling for and an ability to work with these beautiful and powerful
techniques.

9.1. Preliminaries

We will assume that the reader is familiar with the standard definitions
and notationa conventions introduced in the Appendix. We begin with some
basic assumptions and further notational conventions. In al that follows f :
M — Rwill denote a smooth real valued function on a smooth finite or infinite
dimensiona hilbert manifold M. We will make three basic assumptions about
M and f:

() (Completeness). M isacomplete Riemannian manifold.
(b) (Boundedness below) The function f isbounded below on M. Wewill let

B denotethegreatest lower bound of f, soour assumptionisthat B > —oc.

(c) (ConditionC) If {x,,} isany sequencein M for which | f(z,,)| is bounded
and for which ||df,.,. || — 0, it follows that {z,,} has a convergent subse-

quence, x,, — p.

(By continuity, ||df,|| = 0, sothat p isacritical point of f).

Of course if M is compact then with any choice of Riemannian metric
for M al three conditions are automatically satisfied. In fact we recommend
that a reader new to Morse theory develop intuition by always thinking of M
as compact, and we will encourage this by using mainly compact surfaces for
our examples and diagrams. Nevertheless it isimportant to realize that in our

181
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formal proofs of theorems only (a), (b), and (c) will be used, and that as we
shall seelater these conditions do hold in important cases where M is not only
non-compact, but even infinite dimensional.

Recall that p in M iscalled a critical point of f if df, = 0. Other points
of M arecaled reqular points of f. Given areal number c wecall f~1(c) the
c-level of f, andwesay itisa critical level (and that c isa critical value of f)
if it containsat least onecritical point of f. Other real numbers ¢ (even thosefor
which f~1(c) isempty!) are caled regular values of f and the corresponding
levels f~1(c) are called regular levels. We denote by M., (or by M..(f) if there
is any ambiguity) the “part of M below the level ¢”, i.e.,, f~1((—o0,c]). Itis
immediate from the inverse function theorem that for aregular valuec, f~1(c)
is a (possibly empty) smooth, codimension one submanifold of M, that M. is
asmooth submanifold with boundary, and that OM,. = f~1(c). Wewill denote
by C the set of all critical points of f, and by C. theset C N f~1(c) of critical
points at the level c. Then we have the following lemma.

9.1.1. Lemma. The restriction of f to C is proper. In particular,
for any ¢ € R, C. is compact.

PROOF. We must show that f~*([a,b]) N C is compact, i.e. if {x,} is
a sequence of critical pointswitha < f(z,) < b then {z, } has a convergent
subsequence. But since |V f,, || = 0 thisisimmediate from Condition C. =

Since proper maps are closed we have:

9.1.2. Corollary. The set f(C) of critical values of f is a closed
subset of R.

Recall that the gradient of f is the smooth vector field V f on M dual to
df, i.e., characterized by Y f = (Y, Vf) for any tangent vector Y to M. Of
courseif Y istangenttoalevel f~1(c) thenY f = 0, so at each regular point
it followsthat V f is orthogonal to the level through x. Infact it follows easily
from the Schwarz inequality that, at aregular point, V f pointsin the direction
of most rapid increase of f. We will denote by ¢; the maximal flow generated
by —V f. For each z in M ¢.(x) isdefined on aninterval a(z) < t < B(x)
and ¢ — ¢.(x) isthe maximal solution curve of —V f with initial condition
2. Thus Ly (2) = ~Vf,, () and 50 & f(4(2)) = ~VF(f) = —[|Vf]|%, s0
f(p¢(x)) ismonotonically decreasing in t. Since f is bounded below by B it
followsthat f(¢:(x)) hasalimitast — ((x).

We shall now prove theimportant fact that { ¢, } isa"“ positive semi-group”,
that is, for each z in M ((z) = oo, s0 () isdefined for al ¢ > 0.

9.1.3. Lemma. A C*' curve o : (a,b) — M of finite length has
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relatively compact image.

Proor. Since M is complete it will suffice to show that the image
of o is totally bounded. Since f: lo’(t)]| dt < oo, given e > 0 there exist
to=a <t <...<ty <tyy1 = bsuchthat jZ_"“ lo’(t)]| dt < e. Then by
the definition of distancein M it isclear that the x; = o(¢;) are e-densein the
imageof o. =

9.1.4. Proposition. Let X be a smooth vector field on M and
let o : (a,b) — M be a maximal solution curve of X. If b < oo then

st || dt = co. Similarly if a > —oo then o(t) || dt = oo.
N X d Similarly if hen [V X )l d

PROOF. Sinces ismaximal, if b < oo then o (t) hasno limit pointin M
ast — b. Thus, by thelemma, o : [0,b) — M must have infinite length, and

. b
sinceo’(t) = Xg(t), f() ||Xg(t)|| dt =00. =n

9.1.5. Corollary. A smooth vector field X on M of bounded length,
generates a one-parameter group of diffeomorphisms of M.

PROOF.  Suppose || X|| < K < oo. If b < oo then [V || X, dt <
bK < oo, contradicting the Proposition. By a similar argument a > —oo IS
alsoimpossible. =

9.1.6. Theorem. The flow {¢.} generated by —V f is a positive
semi-group; that is, for all t > 0 ¢y is defined on all of M. Moreover for
any x in M ¢.(z) has at least one critical point of f as a limit point as
t — o0.

PROOF. Let g(t) = f(pi(x)) and note that B < ¢(T) = g(0) +
fOT g'(t)dt = g(0) — fOT |V fo,(2)||? dt. Sincethisholdsfor al T' < §(z), by
the Schwarz inequality

B(x) 2
|

B(x) )
/0 IV orioll dt < /B(@) (/ IV fprio dt),

which is less than or equal to /3(x)(g(0) — B)z, and hence would be finite
if 3(z) were finite. It follows from the preceding proposition that 3(x) must
be infinite and consequently ||V f,,, || cannot be bounded away from zero as
t — oo, sinceotherwise [ ||V £, «)||? dt would beinfinite, whereaswe know
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itislessthan g(0) — B. Finaly, since f (¢ (x)) isbounded, it now followsfrom
Condition C that ¢, (x) hasacritical point of f asalimit pointast — co.

9.1.7. Remark. An exactly parallel argument shows that as¢t — «(z)
either f(p(z)) — oo or else a(x) must be —oo and () hasacritical point
of f asalimit pointast — —oo.

9.1.8. Corollary. Ifx in M is not a critical point of f then there is
a critical point p of f with f(p) < f(x).

Proor. Choose any critical point of f that isalimit point of p;(z) as
t— 00. 1

9.1.9. Theorem. The function f attains its infimum B. That is,
there is a critical point p of f with f(p) = B.

Proor. Choose a sequence {z,,} with f(z,,) — B. By the preceding
corollary wecanassumethat each z,, isacritical pointof f. Thenby ConditionC
asubsequenceof {x,, } convergestoacritical point p of f,andclearly f(p) = B.

In order to understand and work effectively with a complex mathematical
subject one must get behind its purely logical content and develop someintuitive
picture of the key concepts. Normally these intuitions are imprecise and vary
considerably from one individual to another, and this often can be a barrier
to the easy communication of mathematical ideas. One of the pleasant and
special features of Morse Theory is that it has a generally accepted metaphor
for visualizing many of its basic concepts. Since much of the terminology and
motivation of the theory is based on this metaphor we shall now explain it in
some detail.

Starting with our smooth function f : M — R we build a“world” W =
M xR. Wenow identify M not with M x {0}, (whichwethink of as* sea-level”)
but rather with the graph of f; that isweidentify z € M with (z, f(x)) € W.
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graph of f

= =

The projection z : W — R, (z,t) — z(x,t) = t wethink of as “height
abovesealevel”. Sincez(x, f(z)) = f(x) thismeansthat our original function
f represents atitude in our new realization of M. And thisin turn means that
thea-level of f becomesjust that, it istheintersection of the graph of f with the
atitude level-surface z = a in W. Thecritical points of f are now the valleys,
passes, and mountain summits of the graph of f, that is the points where the
tangent hyperplane to M is horizontal. We think of the projection of W onto
M as providing us with a “topo map” of our world; projecting the a-level of
finWinto M gives ustheold f~!(a) which we now think of as an isocline
(surface of constant height) on this topographic map.

We give W the product Riemannian metric, and recall that the negative
gradient vector field —V f represents the direction of “ steepest descent” on the
graph of f; pointing orthogonal to the level surfacesin the downhill direction.
Thus (very roughly speaking) we may think of the flow ¢; we have been using
asmodelling theway avery syrupy liquid would flow down the graph of f under
the influence of gravity. We shall return to this picture many timesin the sequel
to provide intuition, motivation, and terminol ogy.

There is a particular Morse function that, while not completely trivial, is
so intuitive and easy to analyze, that it isis everybody’s favorite model, and we
will use it frequently to illustrate various concepts and theorems. Informally it
is the height above the floor on a tire standing in ready-to-roll position. More
precisely, we take M to be the torus obtained by revolving the circle of radius
1 centered at (0, 2) in the (z, y)-plane about the y-axis, and define f : M — R
to be orthogonal projection on the z-axis.
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a

This function has four critical points. a maximum a = (0,0, 3) at the
level 3, a minimum d = (0,0, —3) at the level —3, and two saddle points
b = (0,0,1), and ¢ = (0,0,—1), at the levels 1 and —1 respectively. The
reader should analyze the asymptotic properties of the flow ¢, (x) of —V f in
this case. Of course the four critical points are fixed. Other points on the circle
Ci:x=0,y>+(2—2)%? = 1tendtob, other pointsonCy : y = 0, 22 +4% = 1
tend to ¢, and all remaining points tend to the minimum, d. We shall refer to
this function as the “ height function on the torus’.

The study of theflow {¢, } generated by —V f (or more generally of vector
fields proportional toit) is one of the most important tools of Morse theory. We
have seen alittle of its power above and we shall see much moreinwhat follows.

9.2. The First Deformation Theorem

We shall now use the flow {¢,} generated by —V f to deform subsets of
the manifold M, and see how this leads to a very general method (called “min-
imaxing”) for locating critical points of f. We will then illustrate minimaxing
with an introduction to Lusternik-Schnirelman theory.

9.2.1. Lemma. IfO is a neighborhood of the set C. of critical points
of f at the level ¢, then there is an € > 0 such that ||V f|| is bounded
away from zero on f~(c—e€,c+¢€)\ O.

Proor. Supposenot. Then for each positive integer n we could choose
anz, in f~l(c— 21 c+ 1)\ Osuchthat |Vf,, | < L. By ConditionC, a
subsequence of {z,,} would converge to acritical point p of f with f(p) = ¢,
so p € C. and eventually the subsequence must get inside the neighborhood O
of C., acontradiction. =

Since C,. is compact,
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9.2.2. Lemma. Any neighborhood of C. includes the neighborhoods
of the form N5(C.) = {z € M | p(z,C.) < §} provided § is sufficiently
small.

Now let U be any neighborhood of C.. in M, and choosead; > 0 such that
N5, (C.) C U. Since ||V f,|| = 0 onC, wemay also assumethat |V f,|| <1
forp € Ny, (Ce).

If e issmall enough then, by 2.1, for any §, > 0 we can choose 1« > 0 such
that |V f,|| > uforp € f~1([c—¢,c+e€])and p(p,Cc) > 52 (i-€,p & N5, (Ce)).
In particular we can assume 02 < 41, so that Ny, (C.) € Ny, (C.) C U.

9.2.3. First Deformation Theorem. Let U be any neighborhood
of C. in M. Then for € > 0 sufficiently small o1 (Mq4+\U) C M._.

PROOF. Lete =min(34u?, 1u2(6,—02)), whered,, 82, and  arechosen
asabove. Letp € f~1([c—¢,c+€])\U. Wemust show that f(¢1(p)) < c—c¢,
and since f(y4(p)) is monotonically decreasing we may assume that ¢, (p) €
f (e —€,c+¢€]) for0 < t < 1. Thus by definition of 5 we can also assume
that if p(:(p), Ce) > d2 then |V f, (]| > p.

Since po(p) = pand & f(¢:(p)) = —[IV f4, () |I* we have:

1

Feor®)) = Fo(e) + [ =19 Lo
1
<ctem [ IV

s0 it will suffice to show that

1
|19l e = 26 = min(u®, 1261 — ).
0

We will break the remainder of the proof into two cases.

Case 1. p(p:(t),C.) > o fordl t € [0, 1].

Then ||V fo,,(p || > pfor 0 < ¢ < 1 and hence
Iy IV foil? dt > 2 > min(u?, 4?61 — 62)) .

Case 2. p(p:(t),C.) < d, for somet € [0, 1].

Let ¢o be the first such t. Sincep € U, a fortiorip ¢ Ns,(C.), i.e,
p(po(p),C.) > 01 > 092, SO thereisalast t € [0, 1] less than ¢, such that
p(eo(p),C.) > 61. We denote thisvalue of ¢t by t1, sothat 0 < t; < to <
1, and in the interval [tq,t] we have 61 > p(¢i(p),Ce) > d2. Note that
p(pe,(p),Cc) > 01 while p(¢4,(p),C.) < 62 and hence by the triangle in-
equality p(e¢, (p), v, (p)) = 01 — do. It follows that any curve joining ¢, (p)
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to ¢y, (p) has length greater or equa ¢; — &2, and in particular this is so for
t—i(p), t1 <t <ty Since Lo(p) =—Vf,,(p thismeans:

to
| IVt = 60— 5.
ty

By our choice of 61,
such ¢. Thus

Vel < 1fortinfty, ts], since p(¢i(p),Ce) < 6, for

to to
t2—t1:/ ldtz/ IV forlldt > 61— 5.

ty t1

Ontheother hand, by our choiceof d, fortinty, t] weasohave ||V f,, i) || >
w, since p(¢¢(p),C.) > 62 for such t. Thus

1 to
Awwmmm%ugl|wnmw%t
1

to
> [t =it - )

t1
> p?(82 — 61)
> min(p?, p?(61 —d2)).

9.2.4. Corollary. If ¢ is a regular value of f then, for some ¢ > 0,
@1 (Mc+e) g Mc—e'

PrROOF. SinceC. =@ wecantakeU =@. »

Let F denote anon-empty family of non-empty compact subsetsof M. We
define minimax( f, F), the minimax of f over the family F, to be the infimum
over al Fin F of the maximum of f on F'. Now the maximum value of f on
Fisjust the smallest ¢ such that F* C M.. So minimax(f,F), isthe smallest
¢ such that, for any positive ¢, we can find an F' in F with ¥ C M_.,.. The
family F issaid to beinvariant under the positivetimeflow of —V f if whenever
F e Fandt > 0itfollowsthat ¢, (F) € F.

9.2.5. Minimax Principle. If F is a family of compact subsets of
M invariant under the positive time flow of —V f then minimax(f, F) is
a critical value of M.

ProoOF. By definition of minimax we can find an F' in F with F* C
M,,.. Suppose ¢ were a regular value of f. Then by the above Corollary
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01(Meye) € M._. and a fortiori p1(F) C M._.. But since F isinvariant
under the positive time flow of —V f, @1 (F) is dso in the family F and it
followsthat minimax(f, ) < ¢ — ¢, acontradiction. =

Of course any family F of compact subsetsof M invariant under homotopy
IS a fortiori invariant under the positive time flow of —V f. Here are afew
important examples:
e If o isahomotopy class of maps of some compact space X into M take
F = {im(f)|f € a}.
e Let o be ahomology class of M and let F be the set of compact subsets
F of M suchthat aisintheimageof i, : H.(F) — H.(M).
e Let o beacohomology classof M and let F bethe set of compact subsets
F of M that support « (i.e., such that « restricted to M\ F' is zero).

Thereareanumber of related applications of the Minimax Principlethat go
under the generic name of “Mountain Pass Theorem”. Hereisafairly generd
version.

9.2.6. Definition. Let M be connected. We will call asubset R of M a
mountain range relaiveto f if it separates M and if, on each component of
M\ R, f assumesavalue strictly lessthat inf(f|RR).

9.2.7. Mountain Pass Theorem. If M is connected and R is a
mountain range relative to f then f has a critical value ¢ > inf(f|R).

PRrROOF. Seta = inf(f|R) and let M° and M* be two different com-
ponents of M \ R. Define M) = {x € M" | f(z) < a}. By assumption
each M isnon-empty, and since M isconnected we can find a continuous path
o: I — M suchthat o(i) € M!. Let T denote the set of all such paths o and
let F = {im(o) | o € '}, so that F isanon-empty family of compact subsets
of M. Sinceo(0) and o (1) arein different componentsof M \ R it followsthat
o(tg) € R for somety € I, 50 f(o(ty)) > a and hence minimax(f, F) > a.
Thus, by the Minimax Principle, it will suffice to show thatif o € I"'andt > 0
then ;00 € I, where ¢; is the positive time flow of —V f. And for this
it will clearly suffice to show that if = isin M then so is o;(z). But since
f(eo(x)) = f(x) < o, and f(p:(x)) isanon-increasing function of ¢, it fol-
lows that f(p:(z)) < «, soin particular p;(z) € M \ R, and hence x and
¢t(x) areinthe same component of M \ R. =

In recent years M ountai n Pass Theorems have had extensive applicationsin
proving existence theoremsfor solutionsto both ordinary and partial differential
equations. For further details see [Ra].

We next consider Lusternik-Schnirelman Theory, an early and elegant ap-
plication of the Minimax Principle. This material will not be used in the re-
mainder of these notes and may be skipped without loss of continuity.
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A subset A of aspace X is said to be contractible in X if the inclusion
mapi : A — X ishomotopic to aconstant map of A into X. Wesay that A has
category m in X (and write cat(A, X ) = m) ) if A can be covered by m (but
no fewer) closed subsets of X, each of which is contractible in X. We define
cat(X) = cat(X, X). Here are some obvious properties of the set function cat
that follow immediately from the definition.

(1) cat(A, X) =0if andonly if A = Q.

(2) cat(A, X) = 1if andonly if A iscontractiblein X.

(3) cat(A, X) = cat(4, X)

(4) If Aisclosedin X thencat(A, X) = m if and only if A isthe union of m

(but not fewer) closed sets, each contractible in X.

(5) cat(A, X)ismonotone;i.e,if A C Bthencat(A, X) < cat(B, X).

(6) cat(A, X) issubadditive;i.e., cat(AU B, X) < cat(A, X) + cat(B, X).

(7) If Aand B are closed subsetsof X and A isdeformableinto B in X (i.e,
theinclusioni : A — X ishomotopic asamap of A into X to amap with

imagein B), then cat(A, X ) < cat(B, X).

(8) If h: X — X isahomeomorphism then cat(h(A), X) = cat(A, X).

To simplify our discussion of Lusternik-Schnirelman Theory we will tem-
porarily assume that M is compact. For m < cat(M) we define F,,, to be
the collection of all compact subsets F' of M such that cat(F, M) > m.
Note that F,, contains M itself and so is non-empty. We define ¢,,,(f) =
minimax( f, ,,,). By the monotonicity of cat( , M) we can equaly well
define ¢, (f) by the formula

cm(f) = inf{a € R| cat(My(f), M) > m}.

9.2.8. Proposition. For m = 0,1,...,cat(M), ¢, (f) is a critical
value of M .

Proor. Thisisimmediate from The Minimax Principle, since by (7)
above, F,, ishomotopy invariant. =

Now F,,1 isclearly asubset of F,,,, S0 ¢, (f) < ¢m41(f). But of course
equality can occur (for example if f is constant). However as the next result
shows, thiswill be compensated for by having more critical points at this level.

9.2.9. Lusternik-Schnirelman Multiplicity Theorem.

If cui1(f) = cnaa(f) = - enyk(f) = ¢ then there are at least k critical
points at the level c. Hence if 1 < m < cat(M) then f has at least m
critical points at or below the level ¢,,(f). In particular every smooth
function f : M — R has at least cat(M) critical points altogether.

PrOOF. Suppose that there are only a finite number r of critical points
x1,...,x, a the level ¢ and choose open neighborhoods O; of the z; whose
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closures are digoint closed disks (hence in particular contractible). Putting
O = 0,U...U0,, clearly cat(O, M) < r. By theFirst Deformation Theorem,
for somee > 0 M.\ O canbedeformedinto M,._.. Sincec—e < ¢ = ¢y 41,
cat(Mq._., M) < n + 1, and so by (7) above cat(M.. \ O, M) < n. Thus,
by subadditivity and monotonicity of cat,

cat(Meye, M) < cat(Meyc \O)UO, M) <n+r
and hence
c<ct+e<inf{a e R|cat(My, M) >n+r+1} = cppri1(f).

Since on the other hand ¢ = ¢, (f), (@d ¢, (f) < emy1(f)) it follows that
n+r+1>n+ksor>k

Taken together the following two propositions make it easy to compute
exactly the category of some spaces.

9.2.10. Proposition. If M is connected, and A is a closed subset of
M, then cat(A, M) < dim(A) + 1.

Proor. (Cf. [Pab]). Let {O,} be acover of A by A-open sets, each
contractible in M. Letting n = dim(A), by alemma of J. Milnor (cf. [Pe4,
Lemma 2.4]), there is a an open cover {Gig}, i = 0,1,...,n, § € B; of
A, refining the covering by the O,,, such that G;3 N G0 = @ for g # (.
Since each G5 is contractiblein M, and M is connected, it follows that G; =
U{Gis | B € B;} iscontractiblein M fori =0,1,...,n. Let{U,3}, 6 € B;

be a cover of A by A-open setswith U;s C G;s. Thenfori = 0,1,...,n,

A; o U{Uis | 3 € B;} isasubset of G; and hence contractible in M, and

A = UA;. Findly, sincether are closed in A and locally finite, each A; is
closedin A and hencein M,socat(A, M) <n-+1. =

9.2.11. Proposition. cat(M) > cuplong(M) + 1, provided M is
connected.

Proor. Cf. [BG].

The topological invariant cuplong (M) is defined as the largest integer n
such that, for some field F', there exist cohomology classes v; € H*i (M, F),
i =1,...,n,with positive degrees k;, such that v, U ... U~,, # 0. Thus

9.2.12. Proposition. If M is an n-dimensional manifold and for
some field F there is a cohomology class v € H' (M, F) such that ¥ # 0,
then cat(M) =n + 1.
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9.2.13. Corollary. The n-dimensional torusT" and the n-dimensional
projective space RP" both have category n + 1.

Recall that RP" is the quotient space obtained by identifying pairs of
antipodal points, z and —z, of the unit sphere S* in R* 1. Thus afunction on
RP™ isthe same asafunction on S" that is“even”, in the sense that it takes the
same value at antipodal points x and —x.

9.2.14. Proposition.  Any smooth even function on S" has at least
n + 1 pairs of antipodal critical points.

An important and interesting application of the latter proposition is an
existence theorem for certain so-called “non-linear eigenvalue problems’. Let
¢ : R" — R" beasmooth map. If A € Rand 0 # z € R" satisfy ®(z) = Az,
then x is called an eigenvector and \ an eigenvalue of ®. In applications ¢ is
often of the form V F' for some smooth real-valued function F : R" — R, and
moreover F'isusually even. For example if A isaself-adjoint linear operator
on R™ and we define F'(z) = 1(Az,z), then F iseven, VF = A, and we are
led to the standard linear eigenvalue problem. Usually welook for eigenvectors
onS,={zxeR"||z|]|=7},r>0.

9.2.15. Proposition. A point z of S, is an eigenvector of VF' if and
only if z is a critical point of F|S,. In particular if F' is even then each
S, contains at least n pairs of antipodal eigenvectors for VF'.

Proor. DefineG : R" — Rby G(z) = i||z|?, s0 VG, = z and hence
all positive real numbersare regular valuesof GG. In particular S, = G—1(§r2)
isaregular level of G. By the Lagrange Multiplier Theorem (cf. Appendix A)
x in S, isacritica point of F'|.S,. if and only if VF,, = AVG, = Ax for some

real \.

9.3. The Second Deformation Theorem

We will call a closed interval [a,b] of real numbers non-critical with
respect to f if it contains no critical values of f. Recalling that the set f(C)
of critical values of f isclosed in R it follows that for some e > 0 the interval
l[a — €,b + €] is adso non-critical. If [a,b] is non-critica then the set N/ =
f~Y(la, b]) will be caled a non-critical neck of M with respect to f. We will
now prove the important fact that A has a very simple structure: namely it is
diffeomorphic to W x [a, b] where W = f~1(b).
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Since(Vf)f = ||V f|? ontheset M \ C of regular points, where ||V f|| #
0, the smooth vector fieldY = —WV]“ satisfiesY f = —1. Moregenerally
if F': R — Risany smooth function vanishing in aneighborhood of f(C), then
X = (Fo f)Y isasmooth vector field on M that vanishesin aneighborhood of
C,and X f = —(F o f). We denote by ®, the flow on M generated by X. Let
us choose F' : R — R to be a smooth, non-negative function that is identically
one on a neighborhood of [a, b] and zero outside [a — €/2,b + €/2].

9.3.1. Proposition. With the above choice of F', the vector field
X on M has bounded length and hence the flow ®; it generates is a
one-parameter group of diffeomorphisms of M.

PROOF.  From the definition of Y it is clear that ||Y'[| = o so that
|X|l = y7|F © f|. Since F has compact support it is bounded, and since

|Fo f| vanishesoutside f ! ([a—¢/2, b+¢/2]), itwill sufficetoshowthatﬁ
isbounded on f~!([a — €/2,b + €/2]), or equivalently that ||V f]| is bounded
away fromzeroon f~!([a — /2, b+ ¢/2]). Butif not, then by Condition C we
could find asequence {z,,} in f~1([a — €¢/2,b + €/2]) converging to acritical
point p of f. Then f(p) € [a — €/2,b+ ¢/2], contrary to our assumption that
theinterval [a — ¢, b + €] contains no critical valuesof f. =

Denote by ~(t, ¢) the solution of the ordinary differential equation fi—z =
—F(v) with initial value c. Since & (f o ®4(z)) = Xg,)f = —F(f o
®,(x)), it follows that f(®(x)) = ~(¢, f(x)), and hence that ®;(f~1(c)) =
ft(y(t,¢). Inparticular the flow ®; permutes the level sets of f. From
the definition of ~(¢, ¢) it follows that v(¢,¢) = ¢ —t for ¢ € [a,b] and ¢ —
t > a, whiley(t,c) = cifc > b+eorc < a—e Sinced,(f ) =
f71(v(t, ¢)), it followsthat if wewrite W for the b level of f, then ®;,_. maps
W diffeomorphicaly onto f~1(c) for adl c in [a, b] while, for al ¢, ®, isthe
identity outside the non-critical neck f~1([a — ¢/2,b + ¢/2]).

In al that follows we shall denote by I the unit interval [0, 1], and if
G : X x I — Y isany map, then for ¢ in I we shall writeG; : X — Y for
themap G (z) = G(x,t). Recal that an isotopy of a smooth manifold M isa
smoothmap G : M x I — M suchthat G, isadiffeomorphism of M for al ¢
in [ and G istheidentity map of M. If A and B aresubsetsof M withB C A
then we say G deforms A onto B if G;(A) C Aforaltand G;(A) = B. And
wesay that G fizesasubset S of M if Gy(x) = xforadl (z,t)inS x I. Finaly
if f: M — Rthenweshal say G pushes down the levelsof f if foralc e R
andt € I wehave G;(f~1(c)) = f~1(c'), wherec’ < c.

9.3.2. Second Deformation Theorem. If the interval [a,b] is non-
critical for the smooth function f : M — R then there is a deformation
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G of M that pushes down the levels of f and deforms M, onto M,. If
€ > 0 then we can assume G fixes the complement of f~!(a — €,b + ¢).

Proor. Using the above notation we can define the deformation G by
G(m,t) = (I)(b—a)t(w)- L]

9.3.3. Non-Critical Neck Principle. If [a,b] is a non-critical
interval of a smooth function f : M — R and W is the b-level of f,
then there is a diffeomorphism of the non-critical neck N' = f~(a, b])
with W X [a, b], under which the restriction of f to N corresponds to the
projection of W X [a, b] onto [a, b].

ProoOF. We define the map G of W x [a,b] into N by G(z,t) =
D p—1)(z).Sincex € W, f(x) = bandhence f(G(z,t)) = (b—(b—t)) = t. If
v € TW, then DG(v, &) = D®;(v)+ X. Now ®, mapsW diffeomorphically
ontoW = f~(t) and T My, (., isclearly spanned by thedirect sumof TWy, ()
and X, ). It now follows easily from the Inverse Function Theoremthat G is

adiffeomorphism. =

A Non-Critical Neck.
The dllipses represent the level
surfaces, and thevertical curves
represent flowlines of the gradient
flow.

Theintuitive content of the above results deserves being emphasized. Asa
ranges over a non-critical interval the diffeomorphism type of the a-level of f,
thediffeomorphismtypeof M, , and eventhediffeomorphismtype of thethepair
(M, M,) is constant, that isitisindependent of a. Now, aswe shall see shortly,
if we assume that our function f satisfies a certain ssmple, natural, and generic
non-degeneracy assumption (namely, that it iswhat is called a Morse function)
then the set of critical pointsof f isdiscrete. For ssimplicity let usassumefor the
moment that M iscompact. Then the set of critical pointsisfinite and of course
the set of critical values of f isthen a fortiori finite. Let us denote them, in
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increasingorder, by c1, co, . . ., ¢, andlet uschoosereal numbersag, a1, .. ., ag
Withag < c1 <a1 <eo <...<ap_1 < cp < a. Noticethat ¢; must be the
minimum of f, sothat M,, isempty. And similarly ¢, isthe maximum of f so
that M, isall of M. Moregenerally, by the above remark, the diffeomorphism
typeof M,,, doesnot depend on the choice of a; intheinterval (¢;, ¢;+1), SOwe
can think of a Morse function f as providing us with a specific
method for “building up” our manifold M inductively in a finite
number of discrete stages, starting with the empty M, and then, step
by step, creating M, , out of M, by some “process’ that takes place at the
critical level ¢;, 1, finally ending up with M. Moreover the “process’ that gives
rise to the sudden changesin the topology of f~!(a) and of M, asa crosses a
critical valueisnot at all mysterious. From the point of view of M, itiscalled
“adding a handle”, while from the point of view of the level f=1(a) it isjust
a“cobordism”. From either point of view it can be analyzed fairly completely
and isthe basis for aimost al classification theorems for manifolds.

9.4. Morse Functions

An elementary corollary of the Implicit Function Theorem is an important
local canonical form theorem for a smooth function f : M — R in the neigh-
borhood of aregular point p; namely f — f(p) islinear in a suitable coordinate
chart centered at p. Equivalently, in this chart f coincides near p with its first
order Taylor polynomial: f(p) + df,.

But what if p isacritical point of f? Of course f will not necessarily be
locally constant near p, but a natural conjecture is that, under some “generic’
non-degeneracy assumption, we should again have a local canonical form for
f near p, namely in a suitable local chart, (called a Morse Chart), f should
coincide with its second order Taylor polynomia near p. That such acanonical
form doesexist generically iscalled The Morse Lemmaand playsafundamental
roleinMorse Theory. Beforestating it precisely wereview some standard linear
algebra, adding some necessary infinite dimensional touches.

Let V' be the model hilbert space for M, andlet A : V xV — Rbea

continuous, symmetric, bilinear form on V. We denote by [V —R the

associated homogeneous quadratic polynomial; f, (z) = 1 A(z,z). Now A

defines a bounded linear map A : V. — V” by A(x)(v) = A(z,v). Using
the canonical identification of V with V* we can interpret A as a bounded
linear map A : V' — V, characterized by A(z,v) = (A, v), sothat f, (z) =
+(Az,z). Since A is symmetric, A is self-adjoint. The bilinear form A is
called non-degenerateif A: V — V" (or A : V — V)isalinear isomorphism,
i.e., if 0 does not belong to Spec(A), the spectrum of A. While we will be
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concerned primarily with the non-degenerate case, for now we make a milder
restriction. Let V° = ker(A). The dimension of V0 is called the nullity
of the quadratic form f,. There is a densely-defined self-adjoint linear map

A=t (VO — (V9L But of course A~ may be unbounded. Since
| A]| = sup{|A| | A € Spec(A)} andSpec(A~!) = (Spec(A4))~!, equivaently
Spec(A) might have 0 asalimit point. Itis this that we assume does not happen.

9.4.1. Assumption. Zero is not a limit point of the Spectrum of
A. Equivalently, if A does not have a bounded inverse then V° = ker(A)
has positive dimension and A has a bounded inverse on (V).

(Of coursein finite dimensions this is a vacuous assumption).

Choose ¢ > 0 so that (—¢, €) N Spec(A) contains at most zero. Let p* :
R — R beacontinuousfunction suchthat p* (z) = 1 forz > eandp™*(z) =0
for z < 5. And definep™ : R — Rby p~(z) = p*(—x). Findly let
p” : R — R be continuous with p°(0) = 1 and p°(z) = 0 for |z| > &.
Then using the functional calculusfor self-adjoint operators[La], we can define
three commuting orthogonal projections P = pT™(A), PY = p°(A), and
P~ = p~(A) such that PT + P° + P~ is the identity map of V. Clearly
V9 = im(P?) and we define V' = im(P*) and V~ = im(P~), sothat V
is the orthogonal direct sum V+ @ VO & V. (In the finite dimensional case
V* and V'~ arerespectively the direct sums of the positive and of the negative
eigenspaces of A). The dimension of V'~ is called the index of the quadratic
form f, and the dimension of V' iscalled its coindex.

Let ¢ : R — R be a continuous strictly positive function with ¢(\) =
% for [\| > ¢, and ¢(0) = 1. Then ® = ¢(A) is a self-adjoint linear
diffeomorphism of V' with itself. Since 1p(A)Ap(A) = sgn(A) = pt(A) —
p~(A) foral Xin Spec(A), it followsthat L®A® = PT — P~, sothat

= (Ptx,z) — (P x,2)
= [PTx|* — | Pl

9.4.2. Proposition. Let A :' V — V be a bounded self-adjoint
operator and fA : V' — R the homogeneous quadratic polynomial fA(x) =

$(Az,z). If 0 is not a limit point of Spec(A) then V has an orthogonal
decomposition V =V T @ VO@V~ (with V° = ker(A)) and a self-adjoint
linear diffeomorphism ® : V ~ V' such that

[(@(@) = [PH(@)[I” = [|1P~ ()],
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where PT and P~ are the orthogonal projections of V on V™ and V~
respectively.

We now return to our smooth function f : M — R. (For the moment we
do not need the Riemannian structure on M)

We associate to each pair of smooth vector fields X and Y on M, asmooth
real valued function B(X,Y) = X (Y f). We note that B(X,Y")(p) isjust the
directional derivative of Y f at p in the direction X,,, so in particular its value
depends on X only through its value, X, a p. Now if p is a critical point
of f then B(X,Y)(p) — B(Y, X)(p) = X, (Y f) = Y,(X[) = [X,Y],(f) =
dfp([X,Y]) = 0. It followsthat in this case B(X,Y)(p) = B(Y, X)(p) dso
only dependson Y throughitsvalue, Y,,, a p. This proves:

9.4.3. Hessian Theorem. If p is a critical point of a smooth
real valued function f : M — R then there is a uniquely determined
symmetric bilinear form Hess(f), on T'M,, such that, for any two smooth
vector fields X and Y on M, Hess(f),(X,,Y,) = X, (Y f).

We call Hess(f), the Hessian bilinear form associated to f at the crit-
ical point p, and we will also denote the related Hessian quadratic form by
Hess(f),, (i-e., Hess(f),(v) = 5 Hess(f),(v,v)). (Given aloca coordinate
system ., ...z, for M a p, evaluating Hess(f), (50 52-) we see that the
matrix of Hess( f), isjusttheclassical “ Hessian matrix” of second partial deriva-
tivesof f.)

We shall say that the critical point p is non-degenerate if Hess(f), is
non-degenerate, and we define the nullity, index, and coindex of p to be respec-
tively the nullity, index, and coindex of Hess(f),. Finally, f iscalled a Morse
Function if @l of its critical points are non-degenerate.

Using the Riemannian structure of M we have a self-adjoint operator
hess(f),, defined on T'M,, and characterized by (hess(f),(X),Y) =
Hess(f),(X,Y). Then the nullity of p is the dimension of the kernel of
hess(f),, pisanon-degeneratecritical point of f when hess( f), hasabounded
inverse, and, in finite dimensions, the index of p is the sum of the dimensions
of eigenspaces of hess( f),, corresponding to negative eigenvalues.

Let V denote any connection on T'M (not necessarily the Levi-Civita
connection). Then V induces a family of associated connections on al the
tensor bundle over M, characterized by the fact that covariant differentiation
commutes with contraction and the * product rule” holds. The latter meansthat,
for example given vector fields X and Y on M,

VxY ®df)=Vx(Y)®df +Y @ Vx(df).
Contracting the latter gives:
X(Yf) = df (VxY) +iyiy (Vdf).
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If we define Hess V' (f) to be Vdf then we can rewrite this equation as
Hess ¥ (f)(X,Y) = X(Y f) — df (VxY).

This has two interesting consequences. First, interchanging X and Y and sub-
tracting gives:

Hess ¥ (f)(X,Y) — Hess ¥V (f)(Y,X) = df (+V(X,Y)),

where 7V is the torsion tensor of V. Thus if V is a symmetric connection
(i.e. 7V = 0), asisthe Levi-Civita connection, then Hess V () isasymmetric
covariant two-tensor field on M. And in any case, at a critical point p of f,
where df,, = 0, we have:

HeSSv(f>(Xp7 Yy) = Xp(Yf) = Hess(f)p(Xp, Yp)-

9.4.4. Proposition. If V denotes the Levi-Civita connection for

£
M, then Hess ¥ (f) = Vdf is a symmetric two-tensor field on M that at
each critical point p of f agrees with Hess(f),.

9.4.5. Corollary. hess v (f) o V(Vf) is a field of self adjoint
operators on M that at each critical point p of f agrees with hess(f),.

There is yet another interpretation of Hess(f), that is often useful. The
differential df of f isasection of T M that vanishes at p, so its differential,
D(df ), isalinear map of T'M, into T(T* M), (where 0, denotes the zero
element of 7% M,). Now T(T™*M),, is canonically the direct sum of two
subspaces; the“ vertical” subspace, tangent to thefiber T M,,, which weidentify
with 7% M,,, and the “ horizontal” space, tangent to the zero section, which we
identify with T'M,,. If we compose D(df ),, with the projection onto the vertical
spaceweget alinear map T'M,, — T M, that, under the natural isomorphism of
bilinear mapsV xV — Rwithlinear mapsV — V™, iseasily seentocorrespond
to Hess(f),. With this aternate definition of Hess( f),, the condition for p to
be non-degenerate is that Hess( f),, map T'M,, isomorphically onto 7 M,,.

Itis clear that at the critical point p of f, Hess(f), determines the second
order Taylor polynomial of f at p. But what islessobviousisthat, at least in the
non-degenerate case, f “lookslike” its second order Taylor polynomial near p,
afact known as the Morse Lemma.

LetusputV = T*M,, A = hess(f),,andletV ", V? andV~ beasabove,
i.e., the maximal subspaces of V' on which A is positive, zero, and negative.
Recall that achart for M centered at p isadiffeomorphism ® of aneighborhood
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O of 0in V onto a neighborhood U of p in M with ®(0) = p. Wecal ® a
Morse chart of the first kind at pif f(®(v)) — f(p) = Hess(v) = 1 (Av,v).
And ® iscaled a Morse chart of the second kind at p (or Ssimply a Morse
chart at p) if f(®(v)) — f(p) = |PTv|?* — 2, where P+ and P~ are
the orthogonal projectionson ¥+ and V. It isclear that aMorse chart of the
second kind is a Morse chart of the first kind. Moreover, by the proposition at
the beginning of this section, if a Morse chart of the first kind exists at p, then
so does a Morse chart of the second kind. In this case we shall say simply that
Morse charts exist at p.

9.4.6. Morse Lemma. If p is a non-degenerate critical point of a
smooth function f: M — R then Morse charts exist at p.

Proor. Since the theorem islocal we can take M to be V' and assume
p isthe origin 0. Also without loss of generality we can assume f(0) = 0.
We must show that, after a smooth change of coordinates ¢, f has the form
flx) = %(Aa:,:l:) in a neighborhood O of 0. Since df, = 0, by Taylor's
Theoremwith remainder wecanwrite f near 0 intheform f(z) = 1 (A(z)z, z),
where z — A(x) is asmooth map of O into the self-adjoint operators on V.
Since A(0) = A = hess(f)o isnon-singular, A(z) is also non-singular in a
neighborhood of 0, which we can assumeis O. We define asmooth map B of O
intothegroup GL (V) of invertibleoperatorson V by B(z) = A(xz)~tA(0), and
notethat B(0) is1, theidentity map of V. Now asquare root function is defined
in the neighborhood of I by a convergent power seri%with real coeffici ents, so
we can define a smooth map C' of O into GL(V') by C(z) = y/B(x). Since
A(0) and A(z) are self-adjoint it is immediate from the defl n|t|on of B that
B(z)*A(z) = A(z)B(x). This same relation then holds if we replace B(zx)
by any polynomial in B(x), and hence if we replace B(x) by C(x) whichisa
limit of such polynomials. Thus

C(z)* A(x)C(z) = A(x)C(x)* = A(x)B(x) = A(0)

or A(x) = C1(z)* AC, (x), wherewehaveput C; (z) = C(z)~!. If wedefinea
smoothmap of OintoV by p(z) = Cy(z)z, then f(z) = (Cy(z)* AC, (z)z, z) =
(Ap(z), p(x)), soit remains only to check that ¢ is avalid change of coordi-
nates at 0, i.e., that Dy isinvertible. But Dy, = Cy(z) + D(C1).(x), soin
particular Doy = C1(0) =1. n

9.4.7. Corollary 1. A non-degenerate critical point of a smooth
function f : M — R is isolated in the set C of all critical points of f. In
particular if f is a Morse function then C is a discrete subset of M.

Proor. Maintaining the assumptions and notations introduced in the
proof of the Morse Lemmawe have f(z) = 4 (Az,z) in aneighborhood O of
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0, and hence df, = Ax for x in O. Since A isinvertible, df,, doesnot vanishin
O exceptat 0.

9.4.8. Corollary 2. If a Morse function f : M — R satisfies
Condition C then for any finite interval [a,b] of real numbers there are
only a finite number of critical points p of f with f(p) € [a,b]. In
particular the set C of critical values of f is a discrete subset of R.

Proor. We saw earlier that Condition C impliesthat f restrictedtoC is
proper, so the set of critical pointsp of f with f(p) € [a, b] iscompact. But by
Corollary 1itisasodiscrete. =

Since we are going to be focusing our attention on Morse functions, a
basic question to answer is, whether they necessarily exist, and if so how rare
or common are they. Fortunately, at least in the finite dimensional case this
guestion has an easy and satisfactory answer; Morse functions form an open,
dense subspace in the C? topology of the space C? (M, R) of all C? red valued
functions on M. The easiest, but not the most elementary, approach to this
problem is through Thom's transversality theory. Let ¢ be a smooth vector
bundle of fiber dimension m over a smooth n-manifold M . Recal that if s,
and s, are two C! sections of £ with s;1(p) = s2(p) = v, then we say that
these sections have transversal intersection (or are transversal) at p if, when
considered as submanifolds of M, their tangent spaces at v span the entire
tangent spaceto ¢ at v. Wesay s; and s; aretransversal if they have transversal
intersection wherever they meet. Since each section hasdimension n, and ¢ has
dimension m + n the condition for transversality isthat the intersection of their
tangent spacesat v should havedimension (n+n)—(n+m) = n—m. S0if £ has
fiber dimension n then this intersection should have dimension zero and, since
Ds; mapsT M, isomorphically onto the tangent spaceto s; at v, thisjust means
that Ds;(u) # Dsa(u) for u # 0 in TM,. In particular for £ the cotangent
bundle T* M, asection s vanishing at p is transversal to the zero section at p if
and only if im(Ds) isdigoint from the horizontal space at p, or equivalently if
and only if the composition of Ds with projection onto the vertical subspace,
T* M, is an isomorphism. Recalling our aternate interpretation of Hess(f),,
above we see:

9.4.9. Lemma. The critical point p of f: M — R is non-degenerate
if and only if df is transversal to the zero section of T*M at p. Thus f
is a Morse function if and only if df is transversal to the zero section.

Thom's k-jet transversality theorem [Hi, p.80] states that if sq isa C**!
section of a smooth vector bundle ¢ over acompact manifold M and J*¢ isthe
corresponding bundle of k-jets of sections of ¢, then in the space C**1(¢) of
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C*+1 sections of ¢ with the C**! topology, the set of sections s whose k-jet
extension j s istransversal to jx sg isopen and dense. If wetakefor £ thetrivial
bundle M x R then a section becomes just areal valued function, and we can
identify J1¢ with T% M so that j,f isjust df. Finally, taking & = 1 and letting
so be the zero section, Thom’s theorem together with the above lemma gives
the desired conclusion, that Morse functions are open and densein C?(M, R).

As a by-product of the section on the Morse Theory of submanifolds of
Euclidean space, wewill find amuch moreelementary approach to thisquestion,
that gives amost as complete an answer.

9.5. Passing a Critical Level

We now return to our basic problem of Morse Theory; reconstructing the
manifold M from knowledge about the critical point structure of the function
fM—R

To get a satisfactory theory we will supplement the assumptions (a), (b),
and (c) of the Introduction with the following additional assumption:

(d) fisaMorsefunction.

Aswe saw in the preceding section thisimplies that for any finite interval
[a, b] there are only afinite number of critical pointsp of f with f(p) in [a, b],
and hence only afinite number of critical valuesof f in [a, b].

Our goal is to describe how M, changes as « changes from one non-
critical value a to another b. Now, by the Second Deformation Theorem, the
diffeomorphism type of M, is constant for « in a non-critical interval of f,
hence we can easily reduce our problem to the case that thereisasingle critical
value c in (a,b), and without loss of generality we can assume that ¢ = 0. So
what we want to seeishow to build M, out of M_. when 0 isthe unique critical
valueof f in[—e, ¢]. Ingenera there could be afinite number of critical points
p1,--.,pr a thelevel 0, and eventually we shall consider that case explicitly.
But thediscussionwill begreatly simplified (with no essential lossof generality)
by assuming at first that thereis a unique critical point p at the level 0. We will
let £ and [ denote the index and coindex of f at p and n = k + [ the dimension
of M. If n = oo then one or both of k£ and [ will aso be infinite; nevertheless
we shall write R*, and R for the Hilbert spaces of dimension & and [, and
R" = R' x R,

Asin al good construction projects we will proceed in stages, and start
with some blueprints before filling in the precise mathematical details.
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o Wewill denote by D*(¢), and D'(¢) the disks of radius /e centered at the
origin in R* and R respectively. We will write D* and D! for the unit
disks. The product D' x D*, attached in a certain way to M_. will be
called a handle of index k.

Rk

- = F—=="

R!

[P S — |

o We will construct a smooth submanifold NV of M withM_. C N C M..
Namely, N = M_.(g) = {z € M|g(x) < —€¢}, whereg : M — Riis
a certain smooth function that agrees with f where f is greater than e (so
that M. = M.(f) = M.(g)). Moreover theinterval [—e, ¢] is non-critical
for g, so by the Second Deformation Theorem there is an isotopy of M
that deforms M, = M (g) onto M _.(g) = N.

e The manifold N has a second description. Namely, NV is an adjunction
space that consists of M _ together with a subset H, (called the “handle”)
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that isdiffeomorphic to the above product of disksand isglued onto OM _ ..,
the boundary of M _., by adiffeomorphism of 9D! x D* onto HNOM_..

Thuswhen we pass a critical level f~!(c) of f that contains a
single non-degenerate critical point of index k, M., . is obtained
from M, . by attaching to the latter a handle of index k.

Now for the details. We identify a neighborhood O of p in M with a
neighborhood of the origin in R* = R’ x R¥, using a Morse chart (of the
second kind). We will regard a point of © as apair (z,7), where z € R' and
y € R*. We suppose ¢ is chosen small enough that 0 is the only critical level
of fin [—2¢,2¢|, or equivaently so that p is the only critical point of f with
|f(p)| < 2¢. We can aso assume e so small that the closed disk of radius 2./¢
in R* isincluded in ©. Thus f isgivenin O by f(z,y) = ||z||> — ||y
Choose a smooth, non-increasing function A : R — R that isidentically 1 on
t < 3, positiveon¢ < 1, and zero for ¢ > 1. Then the function g is defined in

O by g(z,y) = f(z,y) — FA(ll=[*/e).

9.5.1. Lemma. The function g can be extended to be a smooth
function g : M — R that is everywhere less than f and agrees with f
wherever f > € and also, outside O, wherever f > —2¢. In particular

Mc(g) = M(f).

PrROOF. Suppose (z,y) in O, f(z,y) > —2¢, and g(z,y) # f(z,y).
Then \(||z]|?/€) # 0 and hence ||z||?> < e. It follows that ||z|? + ||y||?> =
2||z||? = f(z,y) < 2e+2¢,i.e, (x,y)isinsidethedisk of radius2+/¢. Recalling
that the latter disk isinterior to O it followsthat if we extend g to the remainder
of f~1([—2¢,0)) by making it equal f outside O, thenit will be smooth. Since
g < f everywhere on the closed set f~!([—2¢, o0)) we can now further extend
it to afunction g : M — R satisfying the same inequality on all of M. If
f(q) > e then either g isnotin O, s0 g(q) = f(q) by definition of g, or else
q = (z,y) isin O, inwhich case ||z||? > f(z,y) > ¢ 50 X(||z|*/€) = 0, and
againg(q) = f(q). =
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9.5.2. Lemma. For the function g, extended as above, the interval
[—e€, €] is a non-critical interval. (In fact p is the only critical point of g
inS§=g7'([~2¢€), and g(p) = —%).

Proor. Recdlingthat f > g everywhere, and that, outside O, f = ¢
wherever f > —2¢, it follows that f = ¢g on S\O. Thus any critical point
of g in S\O would aso be a critical point of f in f~1[—2¢,2¢]. But by our
choice of ¢, the only such critical point is p, which belongsto O. Thus it will
suffice to show that, inside of O, the only critical point of gisp = (0,0), where
9(x,y) = f(z,y) — 3A12L2) is clearly equal to —2A(0) = —3 < —¢. But
inO,dg = (2—3/\’(@))33 dx+2y dy and, since \’ isanon-positive function,
thisvanishesonly at the origin. =

Now it istime to make the concept of “attaching a handle” mathematically
precise.

9.5.3. Definition. Let P and N be smooth manifolds with boundary,
having the same dimension n = k + [, and with P asmooth submanifold of N.
L et o be ahomeomorphism of D! x D* onto aclosed subset  of N. We shall
say that N arises from P by attaching a handle of index k and coindex 1
(or a handle of type (k,l)) with attaching map « if:

1) N=PUH,
(2) o|(D' x S¥1) isadiffeomorphism onto H N P,
(3) o|(D! x D*) isadiffeomorphism onto N\ P.

Here D* denotes the interior of the k-disk. Of course D! x D isnot a
smooth manifold (it hasa“corner” along D' x 9D*), but both D! x S*~* and
D' x D* are smooth manifolds with boundary.

Note that if £ < oo, (s0, in particular, if n < oo) thenl = n — k is
determined by k, so in this case it is common to speak simply of attaching a
handle of index k.

Thefollowing example (with k = [ = 1) isagood oneto keep in mind: P
is the lower hemisphere of the standard S? in R?, (think of it as a basket), and
'H, the handle of the basket, is a tubular neighborhood of that part of a great
circle lying in the upper hemisphere. Of course, where the handle and basket
meet, the sharp corner should be smoothed.
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Another example that can be easily visualized (k = 1,1 = 2) isthe “solid
torus” formed by gluing a 1-handle D? x D! to the unit disk in R (abowling
ball with a carrying handle).

Recall that, in the case of interest tous, P = M_.(f), N = M_.(g),
and we define the handle H to be the closure of the set of (x,y) € O such
that f(z,y) > —e and g(x,y) < —e. Then recalling that, outside of O, f and
g agree where f > —e¢, it follows from the definition of N as M_.(g) that
N = M_.(f) UH. What remains then is to define the homeomorphism « of
D! x D* onto H, and prove the properties (2) and (3) of the above definition.
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We define o by the explicit formula:

a(z,y) = (ea(ly]*) 2@ + (o (llyl*)z]* + €)%y

where o : I — I is defined by taking o(s) to be the unique solution of the
eguation

A
(1+o0) 3
o 0 o
1 1 T
2
3] ) L
1 2
,21_ I s ZL 1 O 1 S

Clearly A(c)/(1 + o) is asmooth function on I with a strictly negative
derivative on [0,1). It is then an easy consequence of the Inverse Function
Theorem that o is smooth on [0, 1) and strictly increasing on I. Moreover
o(0)=1/2ando(1) = 1.

9.5.4. Lemma. Define real valued functions F and G on R® by
F(z,y) = 2? — y? and G(z,y) = F(x,y) — (%)A(%) (so that, in O,
flu,v) = F(||lu|, |v]]) and g(u,v) = G(||ul], ||v]])). Then in the region U
that is the closure of the set {(x,y) € R* | F(x,y) > —¢ and G(x,y) <

—e} we have
Y2
x> < €0 ( ) .
€+ 22

PrOOF. We must show that the function 4 : R*> — R, defined by
h(z,y) = 22 — ea(y?/(e + 2?)), is everywhere non-positive in Z/. Now for
fixed y, h isclearly only critical for x = 0, where it has a minimum. Hence h
must assume its maximum on the boundary of ¢/ and it will suffice to show that
everywhere on this boundary it is less than or equal to zero. But the boundary
of U is the closure of the union of the two curves 9, = {(z,y)|F(z,y) =
—e, G(z,y) < —e} and 0 = {(z,y)|F(z,y) > —¢, G(z,y) = —€} and
we will show that ~ < 0 both on 9; and on 0.

Indeed on 0, since G < F, (—3¢/2)\(z%/€) < 00 A(x?/€) > 0, which
impliesz? /e < 1orz? < e. Ontheother hand, sincez? —y? = F(x,y) = —e,
v?/(e+2?) =1s00(y?/(e +2?)) = 1 and hence h(z,y) = 2% — € < 0.
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On 9, we again have G < F, so as above z2/e < 1. The equality
G(z,y) = —e gives
2 2
yo o (3 Aate
=1-(3)1

€+ z2 2) (1 +a2/e)

Now z?/e < 1/2 would imply both A\(z?/e) = 1 and 1 + 2?/e < 3, s0
the displayed inequality would give the impossible 42 /(¢ + 2%) < 0. Thus
1/2 < 2%/e < 1, s0 2% /e isin the range of o, say 22/e = o(p). Then by
definition of o,

Lot ()AL -1 () (=

and hence

hy) = a* — e ( ;ﬁ) = co(p) ~ e (p) =0,

soh<0onog,aswel. =

The remainder of the proof is now straightforward. We will leave to the
reader the easy verifications that if (u,v) = «(x,y) then f(u,v) > —e and
g(u,v) < —¢, sothat a maps D! x D* into H.

Conversely, supposethat (u, v) belongsto H. Then F(||ul], ||v]]) = |lull*—
[0]? = —e and G(||ull, [|lv]]) < —e. Thus|v]]?/(e + |juf?) < 1,0y =
(e + [|ul|2)~Y/2v € D*. Also o(|[v]|2/(e + ||u]|?)) iswell defined, and by the
preceding Lemma [ul[2/ec([[v]|? /(e + [ul[2)) < T sothat z = (eo (|[v]2/( +
|u|[?)))~'/%u € D' It followsthat B(u,v) = (z,y) definesamap 3 : H —
D! x D*, andit iselementary to check that o and 3 are mutually inverse maps,
o that o is ahomeomorphism of D! x D* onto H. Since ¢ is smooth and has

positive derivative in [0, 1) it follows that « is a diffeomorphism on D! x D*.
On D! x S~ the map « reduces to

a(z,y) = e + (e(||z] + 1))y

which is clearly a diffeomorphism onto H N dM_.. This completes the proof
that M., . isdiffeomorphic to M. _. with ahandle of index & attached.

Finally, let us see what modifications are necessary when we passacritical
level that contains more than onecritical point. First note that the whole process
of adjoining a handle to M_. took place in a small neighborhood of p (the
domain of a Morse chart a p). Thus if we have several critical points at the
same level then we can carry out the same attaching process independently in
digoint neighborhoods of these various critical points.
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9.5.5. Definition. Suppose we have a sequence of smooth manifolds
N = Ny, N1,...,Ng = M suchthat N, , arisesfrom N; by attaching ahandle
of type (k;, [;) with attaching map «;. If the images of the «; are disoint then
we shall say that M arises from N by the disjoint attachment of handles
of type ((k1,11), ..., (ks,ls)) with attaching maps (aq,...,as).

9.5.6. Theorem. Let f be a Morse function that is bounded below
and satisfies Condition C on a complete Riemannian manifold M. Sup-
pose ¢ € (a,b) is the only critical value of f in the interval [a, b], and that
p1,...,Ds are all the critical points of f at the level c. Let p; have index
k; and coindex l;. Then M, arises from M, by the disjoint attachment
of handles of type ((k1,11),..., (ks,ls))-

Let usreturn to our example of the height function onthetorus. Thatis, we
take M to bethe surface of revolution in R?, formed by rotating the circle 22 +
(y—2)% = 1 about the z-axis. Thefunction f : M — Rdefinedby f(z,y,2) =
z isaMorse function with critical pointsat (0,0, —3), (0,0,—1), (0,0, 1), and
(0,0, 3), and with respective indices 0,1,1,2. Here is a diagram showing the
sequence of stepsin the gradual building up of thistorus, starting with adisk (or
0-handle), adding two consecutive 1-handles, and finally completing the torus
with a2-handle.

v
A
o o i F
9.6. Morse Theory of Submanifolds

Asweshall now see, thereisamoredetailed Morsetheory for submanifolds
of a Euclidean space. In this section proofs of theorems will often be merely
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sketched or omitted entirely, since details can be found in the first two sections
of Chapter 4.

We assume in what follows that M is a compact, smooth n-manifold
smoothly embedded in R, and we let k& denote the codimension of the em-
bedding. (We recall that, by a classical theorem of H. Whitney, any abstractly
given compact (or even second countable) n-manifold can always be embedded
as a closed submanifold of R*"*!, so for k& > n we are not assuming anything
special about M. We will consider M as a Riemannian submanifold of RY,
i.e., we give it the Riemannian metric induced from R"

Let L(RY,RY) denote the vector space of linear operators from R to
itself and L*(R™, RY) the linear subspace of self-adjoint operators. We define
amap P : M — L*(RY,R"), called the Gauss map of M by P, = orthogonal
projection of RY onto TM,. We denote the kernel of P, (that is the normal
spaceto M at x) by v,.. Wewill write P;- for the orthogonal projection I — P,
of RY onto v,. Sincethe Gauss map isamap of M into avector space, at each
point z of M it has awell-defined differential (DP), : TM, — L*(RN,RY).

9.6.1. Definition. For each normal vector v to M at = we define alinear
map A, : TM, — RY, called the shape operator of M at x in the direction
v, by Ay(u) = —(DP)a(u)(v).

Sincethetangent bundle 7'M and normal bundle v (M) are both subbundles
of thetrivial bundle M x RY , theflat connection on thelatter induces connections
VT and V¥ on TM and on v(M). Explicitly, given v € TM,, a smooth
curve o : (—e, ) — M with ¢’(0) = u, and a smooth section s(t) of T'M
(resp. v(M)) along o, we define VI (s) (resp. V¥(s)) by P.(s'(0)) (resp.
P (s'(0))). Clearly VT isjust the Levi-Civita connection for M.

The following is an easy computation.

9.6.2. Proposition. Given w in TM, and e in v(M), let o :
(—€,€) — M be a smooth curve with ¢'(0) = u and let s(t) and v(t) be
respectively tangent and normal vector fields along o with v(0) = e. Let
Pe denote the section x — P,(e) of T(M). Then:

(i) Ac(u) = —P,v'(0); hence each A, maps T M, to itself,

(ii) Ac(u) = VT (Pe),
(i) (A, (u), 5(0)) = (e, '(0)).

Suppose F : RN — Risasmooth real valued function on RY and f =
F|M isitsrestrictionto M. Sincedf = dF|T M,, it followsimmediately from
the definition of the gradient of a function that for x in M we have Vf, =
P.(VF,), and as a consequence we see that the critical points of f are just
the points of M where VF' is orthogonal to M. We will use this fact in
what follows without further mention. Also, aswe saw in the section on Morse
functions, at acritical point z of f Hess(f), = V7 (V).
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We define a smooth map H : S¥~! x RY — Rby H(a,z) = (a,z)
and, for each o € S¥~!, we define H, : R¥ — Randh, : M — R by
H,(x) = H(a,z) and h, = H,|M. Each of the functions ., is called a
“height” function. Intuitively, if wethink of a asthe unit vector inthe“vertical”
direction, so (a, x) = 0 defines the sea-level surface, then h,, () representsthe
height of apointz € M abovesea-level. Similarly wedefine F : RY x M — R
by F(a,z) = %]z — a|? andfora € RY we define F, : R — R and
fo: M — Rby F,(x) = F(a,z) and f, = F,|M. Somewhat illogically we
will call each f,, a“distance” function.

For certain purposes the height functions have nicer properties, while for
others the distance functions behave better. Fortunately there is one situation
when there is amost no difference between the height function s, and the
distance function f,,.

9.6.3. Proposition. If M is included in some sphere centered at the
origin, then h, and f_, differ by a constant; hence they have the same
critical points and the same Hessians at each critical point.

Proor. Supposethat M isincluded in the sphere of radius p, i.e., for x
in M we have ||z]|? = p2. Then

fralw) = 5l + af?
= Sl + lalP) + . a)

= S+ alP) + hae).

Thusif the particular embedding of M in Euclidean spaceis not important
we can always use stereographic projection to embed M in the unit spherein
one higher dimension and get both the good properties of height functions and
of distance functions at the same time.

9.6.4. Proposition. The gradient of h, at a point x of M is P,a, the
projection of a on TM,, so the critical points of h, are just those points
x of M where a lies in the space v,, normal to M at x. Similarly the
gradient of f, at x is P,(x — a), so the critical points of f, are the points
x of M where the line segment from a to x meets M orthogonally.

Proor. Since H, islinear, d(H,).(v) = Hy(v) = (a,v), S0 that
(VH,), = a. Similarly, since F,, isquadraticwecomputeeasily that d( F, ). (v) =
(rt —a,v) 0 (VF,), =x—a. =«

By another easy computation we find:
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9.6.5. Proposition. At a critical point x of hg, hess(hy), = A,.
Similarly at a critical point x of f,, hess(fo)e =1+ Az—q-

Thus, because the hessian of A, is self-adjoint we see

9.6.6. Corollary. For each v in v(M), A, is a self-adjoint operator
onTM,.

We recall that for v in v(M),,, the second fundamental form of M at = in
the direction v isthe quadratic form 11, on T'M, defined by A,, i.e.,

IIv(ula UZ) — <Avu17 'LL2>,

and the eigenvalues of A, are caled the principal curvatures of M at x in the
normal direction v.

9.6.7. Proposition. Givene inv(M),, let v(t) = z+te. Then for all
real t, x is a critical point of f,) with hessian I —tA.. Thus the nullity
of fut) at x is just the multiplicity oft~! as a principal curvature of M at
x in the direction e. In particular, x is a degenerate critical point of f, )
if and only if t=! is a principal curvature of M at x in the direction e.
If 1 is not such a principal curvature then x is a non-degenerate critical
point of f, ., and its index is

Z nullity of fy,) at w.
0<t<1

PrOOF. Thefirst statement followsdirectly from the above propositions
by taking a = x + te, anditisthenimmediate that the nullity of £, isu(t™1),
where 1(\) denotes the multiplicity of A asan eigenvalue of A.. On the other
hand, the multiplicity of A asan eigenvalue of hess( f,y¢c). = 1 — A, isclearly
(1 —XN). Since A < 0if andonly if 1 — \ equalst~! for sometin (0,1), the
formulafor theindex of f, . at = follows. =

We will denoteby Y : v(M) — RY the“exponential” or “endpoint” map
(z,v) — z + v of the normal bundleto M into the ambient RY .

9.6.8. Definition. If a = Y (z,e) then a iscalled non-focal for M with
respect to z if DY, . isalinear isomorphism. If on the contrary DY/, . has
akernel of positive dimension m then a is called a focal point of multiplicity
m for M with respect to z. A point a of RY is called a focal point of M if,
for somex € M, a isfocal for M with respect to x.
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9.6.9. Proposition. The point a = Y (z,e) is a focal point of
multiplicity m for M with respect to x if and only if x is a degenerate
critical point of f, of nullity m.

Proor. Lety(t) = (o(t),v(t)) beasmooth normal field to A/ aong a
smooth curve o (t), with 0(0) = x and v(0) = e. Then:

v’ (0) + P’ (0)
= (I — A,)o’(0) + P/(0).

since by a proposition above A.0’(0) = —P,v'(0). Now taking o(t) = x and
v(t) = e + tv gives the geometrically obvious fact that DY/, . reduces to the
identity on the subspace v(M),.. It then follows by elementary linear algebra
that ker(DY(, ) and ker(I — A.) have the same dimension. Since we have
seen that hess(f,) = I — A, thefinal statement follows.

9.6.10. Corollary. If a € RN is not a focal point of M then the
distance function f, is a Morse function on M.

9.6.11. Morse Index Theorem. If M is a compact, smooth
submanifold of RN, z € M, e € v(M),, and a = x + e is non-focal for
M with respect to x, then x is a non-degenerate critical point of the
“distance function” f, : M — R, v — (3) |lv — a||?, and the index of x
as a critical point of f, is just equal to the number of focal points for M
with respect to x along the segment joining x to a, each counted with its
multiplicity.

Proor. Immediate from the above. =«

Next recall Sard’s Theorem. Suppose X and Y are smooth, second count-
able manifolds of the same dimensionand F : X — Y isaC! map. A point
p of X iscaled aregular point of F'if DF, : TX,, — TY}, isalinear
isomorphism, or equivaently if F'isalocal diffeomorphism at p. A point ¢ of
Y iscaled aregular value of F if al pointsof F'~1(q) areregular pointsof F;
other points of N are called critical values of F'. Then Sard’'s Theorem [DR,
p.10] statesthat the set of critical values of F' has measure zero, SO
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that in particular regular values are dense. Taking X = v(M), Y = RV, and
F =Y, thecritical values are those points of RYY which arefocal points of M.
Thus, by the above Corollary, the distance function f, isaMorse function for
admost al a € RY. In particular if f, isnot itself aMorse function, that isif a
isafoca point of M, we can nevertheless choose a sequence a,, of non-focal
points converging to a, and then f, will be a sequence of Morse functions
converging to f, inthe C'°° topology.

As an easy application of this fact we can now give a simple proof that
any smooth real valued function on M, G : M — R, can be approximated in
the C'*° topology by Morse functions. From the above remark it will suffice to
show that G can berealized asadistance function, and of courseit doesno harm
to change G by adding a constant. Define an embedding of M in the sphere of

radiusr in RV 2 by 2 — (x,G(a:), V2 —|z]|2 - G(:c)2>,where of course
r is chosen greater than the maximum of +/||z||2 + G(z)2. Then, looked at in

RY*2 Gisclearly theheight function h,,, wherea = (0,1, 0). So, by anearlier
remark, G differs by a constant from the distance function f_,.

9.7. The Morse Inequalities

First we review some terminology.

We will be dealing with categories of pairs of spaces (X, A). We assume
the reader is familiar with the usual notions of maps (X, A) — (Y, B), homo-
topies between such maps, etc. As usua we identify the pair (X,®) with X
Homology groups H.. (X, A) will always be with respect to somefixed principal
ideal domain R. In our applications R will usually be either Z or Z5.

Let X be aspace and A aclosed subspace of X. A retraction of X onto
Aisamapr: X — Athatistheidentity on A. If suchamap existswecall A a
retract of X. If thereisahomotopy p : X x I — X suchthat p, istheidentity
map of X and p; = r then we call p a deformation retraction of X onto A
and call A a deformation retract of X. And finaly if in addition p;| A is the
identity map of A foral ¢in I thenwecal p astrong deformation retraction,
and call A astrong deformation retract of A.

9.7.1. Lemma. Let X be a convex subset of R", and A a closed
subset of X. Ifr is a retraction of X onto A then p(z,t) = (1—t)x+tr(x)

is a strong deformation retraction of X onto A.

ProoOF. Trivia. =«
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9.7.2. Proposition. (0 x D*)U (D' x S*7!) is a strong deformation
retract of D' x D¥.

PROOF. Since D! x D* isconvexinR!** weneed only definearetraction
r: D' x D¥ — (0 x DF)u (D! x SF71).

Of courser(0,y) = (0,y) and, for z # 0,

(0. 528 ) MESE =

MDA (el 2ol - 2 pty) othenwise

] Nyl

Hereisadiagram of the retraction r.

Picture of r(x,y)

We next recall the concept of attaching ak—cell toaspace. LetY beclosed
subspace of aspace X, and G : D* — X acontinuous map of the k—disk onto
another closed subspace, e, of X. Wewill write X =Y U, e* and say X is

obtained from Y by attaching a k—cell with attaching map ¢ & G|S"! if:
() X =Y Uek,
(2) G maps D¥ = D\ S*~1 homeomorphically onto ¢*\Y", and

(3) g mapsS*! onto Ak E ek Y.

G iscaledthe characteristic map of the attaching. In our applications G
will actually be a homeomorphism of D¥ onto e*.

Notethat X canbereconstructed fromY andtheattachingmapg : =1 —
Y by taking the topological sum of D* and Y and identifying z inS*~! = 9 D*
with g(z) inY.

Since by (2) we have a relative homeomorphism of the pairs of spaces,
(D*,SF=1) and (¥, 9e), it follows that the homology groups H;(D*,S"1)
and H,(e*, e*) are isomorphic. On the other hand we have an excision iso-
morphism between H; (D", S*~1) and H;(X,Y). Hence:
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9.7.3. Proposition. If X is obtained from Y by attaching a k—cell

then:
Hy(X,Y) ~ Hy(e",8e*)

0 otherwise.

If, fori = 1,2, X; isaspace and A; is a subspace of X;, then a map
f1: (X1, 41) — (Xa, Ag) iscaled a homotopy equivalence of these pairs if
thereexistsamap f> : (X3, As) — (X1, A1) suchthat f; o fo and fo o f; are
homotopic (asmaps of pairs) to the respectiveidentity maps. (f> isthencalled a
homotopy inversefor f). If thereisahomotopy equivalence f; : (X1, A1) —
(X3, As) thenwesay (X1, A1) and (X5, As) are homotopy equivalent or have
the same homotopy type. Inthiscase H,(f1) : H« (X1, A1) — H. (X2, As)
is an isomorphism with inverse H., ( f2).

Supposein particular X isasubspace of X; and r isastrong deformation
retraction of X; onto X,. Thenif Ay C Ay, r: (X1,4;) — (X2, XoN A4y)
isahomotopy equivalence. (Theinclusioni : (Xo, Xo N A7) — (X1, 4;) isa
homotopy inverse).

9.7.4. Theorem. Let N and P be smooth manifolds with boundary.
If N arises from P by attaching a handle of type (k,l) then N has as
a strong deformation retract a closed subspace X = P U, e, obtained
from P by attaching a k—cell e*. In particular (N, P) has the homotopy
type of P with a k—cell attached, so if k < oo then

R if I=k;

Hy(N, P :{
d ) 0 otherwise.

PROOF. Leta : D' x D* ~ H be the map attaching the handle H to
Ptoget N. DefineG : DF ~ ¢k by G & a|(0 x DF). The deformation
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retraction of N = P U H onto P U e” is of course the identity on P and equals
aoroa~! onH, wherer isthe strong deformation retraction » : D' x D* —
(0 x D¥) U (D' x S¥1) of the above proposition. =

9.7.5. Remark. Of course, more generaly, If N arises from P by dis-
jointly attaching handles of type ((k1,11), ..., (ks,ls)) then N has as a strong
deformation retract aclosed subspace X = PU,, e* ...U,_ "=, obtained from
P by disointly attaching cellse®, . . ., es.
Suppose we have a sequence of closed subspaces X; of X, i = 0...n,
with
A=XyCX;...C X, =X

andmaps g; : S ! — X;,i =0,...,n— 1, suchthat X;,; =~ X; Uy, e,
i.e,, X;1 ishomeomorphicto X; with ak;—cell attached by the attaching map
gi- Inthiscase we call the pair (X, A) a(relative) spherical complex, and the
sequenceof attaching mapsiscalledacell decomposition for (X, A). If weonly
have ahomotopy equivalence of X; ; with X; U, ek thenweshall call (X, A)
ahomotopy spherical complex, and call the sequence of g;’sa homotopy cell
decomposition. In either case, for agiven cell decomposition or homotopy cell
decomposition we will denote by v; the number of cells e, ..., eF»—1 with
k; = i. Inother words v; isthetotal number of cells of dimension ¢ that we add
to Atoget X.

GivenaMorsefunction f : M — Rwedefineits Morse numbers pg(f),
0<...<k<dim(M),by ux(f)=thenumber of critical pointsof f of index
k. More generaly, for a < b we define . (f, a,b) = the number of critical
points of index k in f~1(a,b), and ux(f,b) = pr(f, —oo,b) = the number
of critical points of f of index k£ below the level b. Then from the preceding
theorem and Theorem 5.6 we have.

9.7.6. Theorem. Let a < b be regular values of a Morse function f :
M — R that satisfies Condition C on a complete Riemannian manifold
M. Then (My, M,) is a homotopy spherical complex. In fact it has a
homotopy cell decomposition with the number vy, of cells of dimension k

equal to p(f,a,b).

9.7.7. Corollary. Any compact, smooth manifold M is a homotopy
spherical complex, and in fact for any Morse function f : M — R there
is a homotopy cell decomposition for M with v, = ug(f).

But wait! In the above theorem we have apparently ignored critical points
of infiniteindex. Isthisreally legitimate? Yes, for the next proposition implies
that attaching a handle of infinite index to a hilbert manifold does not change
its homotopy type; so insofar astheir effect on homotopy typeis concerned we
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can ssimply ignore critical points of infinite index. (Thereis a beautiful result
of N. Kuiper that infinite dimensional hilbert manifolds of the same homotopy
type are diffeomorphic, so passing acritical point of infiniteindex does not even
change diffeomorphism type.)

9.7.8. Proposition. If D*° is the closed unit disk in an infinite
dimensional Hilbert space V, and S = 0D is the unit sphere in V,
then there is a deformation retraction of D> onto S. Hence if A is any
space and g : S — A is any continuous map then there is a deformation
retraction of the adjunction space X = AU,D* onto A, and in particular
X has the same homotopy type as A.

ProoOF. Since D*° is convex, it will suffice to show that there is a
retraction of D>° onto S>°. Now recall the standard proof of the Brouwer Fixed
Point Theorem. If there were a fixed point freemap h : D™ — D™ it would
imply the existence of adeformation retraction of D™ onto S"~*; namely ()
is the point where the ray from h(z) to z meets S"~*. If n < oo this would
contradict the fact that H,, (D", S"~1) = Z, so there can be no such retraction
and hence no such fix point free map. But when n = oo we will see that such
afixed point free map does exist, and hence so does the retraction ». Thiswill
be a conseguence of two simple lemmas.

9.7.9. Lemma. D has a closed subspace homeomorphic to R.

Proor. Let {e,} be an orthonormal basis for ' indexed by Z, and
define F : R — D> by F(t) = cos(%(t — n)m)e, + sin(5(t — n)m)en41 for
n <t <n+ 1. Itiseasly checked that F' isahomeomorphism of R into D>
with closed image. »

9.7.10. Lemma. If a normal space X has a closed subspace A
homeomorphic to R then it admits a fixed point free map H : X — X.

ProOOF. Since A ishomeomorphic to R it admits afixed point free map
h: A — A, corresponding to say trandlation by 1 in R. Since A is closed in
X and X isnormal, by the Tietze Extension Theorem h can be extended to a
continuousmap H : X — A, andwemay regard H asamap H : X — X.
If x € Athenx # h(z) = H(z), whileif x € X \ A then, since H(x) € A,
again H(x) #z.

While the number v, of cells of dimension & in acell decomposition for a
spherical complex (X, A) isclearly notin genera atopological invariant, there
are important relations between the v/, and topological invariants of (X, A). In
particular there are the famous*“Morseinequalities’, relating certain alternating
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sums of the v/, to corresponding alternating sumsof betti numbers. We consider
these next.

Inwhat follows all pairs of spaces (X, A) considered are assumed “admis-
sible”, that is homotopy spherical complexes. We fix afield F', and for each
admissible pair (X, A) and non-negative integer k£ we define b, (X, A), the k8
betti number of (X, A) with respect to F', to bethe dimension of Hy (X, A; F'),
and we recall that the Euler characteristic of (X, A), x(X, A), is defined to be
the alternating sum, >, (—1)*bx (X, A), of the betti numbers. (We shall see
that it isindependent of F)).

For each non-negative integer & we define another topological invariant,

k
Se(X,A) = 3 (“D)F (X, A).

m=0

Thus:
SO = bO7

S1="b1 — by = b1 — So,

S =br —bp_1+... by =br — Sk_1,
X=bg—b1+by— ...

9.7.11. Proposition. The Euler characteristic x is additive and
each Sy is subadditive. That is, given
XoC X1 C...C Xy,
with all the pairs (X;, X;_1) admissible, we have:
Sk(Xn, Xo) < ZSk(Xi,Xi—1),
i=1

Xn,XO ZX Xzsz 1

Proor. By induction it suffices to show that for an admissible triple
(X,Y, Z)wehave S, (X, Z) < Sk(X,Y)+Sk(Y, Z),andx (X, Z) = x(X,Y)+
x(Y, Z). Thelong exact homology sequence for thistriple:

8'm 1
(Y Z) s Ho (X, Z) = Hoy (X, Y ) ——
gives the short exact sequences:

0 —imOnt1) — Hn(Y,Z) — im(i,,) — 0,
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0 —im(iy,) — Hp(X,Z) — im(j,,) — 0,
0 — M (jn) — Hp(X,Y) — im(9,) — 0,
and these in turn imply the identities:
b (Y, Z) = dimim (Opp41) + dimim (i,,)
b (X, Z) = dimim (iy,) +dimim(j,,)
b (X, Y) =dimim (j,,) + dimim(0,,).
Subtracting the first and third equation from the second,

b (X, Z) — by (X, Y) — by (Y, Z) = —(dimim (0,,) + dimim (0p,41))
so multiplying by (—1)*=™, summing from m = 0 to m = k, and using that
0y = 0 we get

Sk(X, Z) — Sk(X, Z) — Sk(X, Z) = —dim |m(8k+1) < 0.

Similarly, multiplying instead by (—1)™, summing, and using that eventualy
Or = 0 givesthe additivity of . =

9.7.12. Theorem. Let (X, A) be a homotopy spherical complex
admitting a homotopy cell decomposition with vy, cells of dimension k.
If b, = b (X, A) denotes the k*" betti number of (X, A) with respect to
some fixed field F', then:
bo < vy,
b1 —bo < 11 — v,

b —bp_1+...xbyg <vp—vi_1+...E£1.

Moreover

XX A)Z DY (-1 =) (-1
Proor. Let
A=XoCX;C...CX,=X

with X; 11 = X; U,, ¥ bethe cell decomposition for (X, A). Note that since
bm(Xi+17 Xl) = (Sm ki it follows that Z?:_OI bm<X¢_|_1, X@) = v,,. Hence

n—1 k k
Do Sk(Xirn, X)) =) > (DMK, Xi) = ) (=1,
=0

i=0 m=0 m=0
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and
n—1 n—1 k k
Z Xk(Xi+17Xi> = Z (_1)mbm(XH-17 Xz) = Z (_1)ml/ma
i=0 i=0 m=0 m=0

so the theorem is immediate from the additivity of x and the subadditivity of
the Sk |

9.7.13. Corollary. Let a < b be regular values of a Morse func-
tion f : M — R that satisfies Condition C on a complete Riemannian
manifold M. Let puy = ux(f,a,b) denote the number of critical points of
index k of f in f~*(a,b), and let by = by(My, M,) denote the k' betti
number of (My, M,) over some field F. Then:

(Morse Inequalities)

bOSNO?
b1 — by < p1 — po,

b, —br—1+...E£by < pp — pg—1 + ... £ po.

Moreover
(Euler Formula)

Finally:
(Weak Morse Inequalities)
br, < pik.

Proor. TheMorse Inequalities and Euler Formula are immediate from
the theorem and Theorem 7.6. The Weak Morse Inequalities follow by adding
two adjacent Morse Inequalities. =

9.7.14. Definition. A Morsefunction f : M — R onacompact manifold
iscaled a perfect Morse functionif al the Morse inequalities are equalities, or
equivalently if px(f) = b (M) fork =0,1,...,dim(M).

Consider again our basic example of the height function on the torus 7°2.
Recall that ;1o = 1, u1 = 2, and s = 1. Since the torusis connected by = 1,
and since it is oriented b, = 1. Then by the Euler Formula we must have
b1 = u1 = 2. Inparticular thisis an example of a perfect Morse function.
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More generally let > be an oriented surface of genus g, i.e., a sphere with
g handles. Thereis a Morse function on X (an obvious generalization of the
height function on the torus) that has one maximum, one minimum, and 2g
saddles. The same argument as above shows that by = b, = 1, by = 2¢, and
that thisis a perfect Morse function.

Now let f : ¥ — Rbeany Morsefunction on X. We can rewritethe Euler
Formula as a formulafor the number of mountain passes on X, y1, in terms of
the number of mountain peaks, 12, the number of valleys, 1o, and the number
of handles, g; namely

p1 = (p2 — 1) + (o — 1) + 2g.

So, for a compact oriented surface, a Morse function is perfect precisely when
it has a unigue minimum and a unique maximum.

9.7.15. Theorem. Suppose f : M — R is a Morse function on a
compact manifold such that all the odd Morse numbers pisy41 are zero.
Then all the odd betti number b1 also vanish, and for the even betti
numbers we have by, = poy. In particular f is a perfect Morse function.

Proor. Thattheodd betti numbers are zero isimmediate from the weak
Morse inequalities. The Euler Formulathen becomes

X(M) =bg + bz + ... + boy = pio + pi2 + ... + f2m,
so the weak Morse inequalities by, < o must in fact all be equalities.  »

As a typical application of the above result we will compute the betti
numbers of n dimensional complex projective space, CP". Recall that CP" is
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the quotient spaceof C" 1\ {0} under the equivalencerelation z ~ Az for some
non-zero A € C. For z in C"™ weput 2 = (2, ..., 2z,) and if z # 0 then [2]
isitsclassin CP". Theopensets Oy, = {z € C"*! | 2, #0}, k= 0,1,...n
cover CP" and in O, we have coordinates {5} 1<j<n+1 j#k
defined by 22 = xh + iy},

Define f : CP" — Rby f(z) = (Az, 2)/(z, 2), where (w, z) = Y. w;Z;
and A is the hermitian symmetric matrix diag (Ao, ..., An) With (Ag < A1 <
... < ). Leteg,..., e, bethe standard basis for C"*,

9.7.16. Proposition. The critical points of f are the |ex|. Moreover
ler] is non-degenerate and has index 2k. Thus f is a perfect Morse
function and the betti numbers b, of CP" are zero for k odd and 1 for
k=0,2,...,2n.

Proor. Exercise. Usethe above coordinatesto compute the differential
and Hessianof f. =



Chapter 10
Advanced Critical Point Theory

10.1. Refined Minimaxing

Our original Minimax Principle located critical levels. Now we will ook
for more refined results that locate critical points.

In al that follows we assume that f is a smooth real valued function
bounded bel ow and satisfying Condition C on acomplete Riemannian manifold
M, and that M is a closed subspace of M that is invariant under the positive
time flow o, generated by —V f. (In our applications M, will either be empty,
or of theform M., or asubset of the set C of critical pointsof f.)

Let Y be a compact space and Y; a closed subspace of Y. We denote by
(Y, Yy), (M, My)] the set of homotopy classes of mapsh : Y — M such that

h(Yy) € My. Givena € [(Y,Yp), (M, My)] we define F,, = {im(h) | h €
a}, but we will use « and F,, almost interchangeably, as in minimax( f, «) o

minimax( f, F.,). Clearly F,, isinvariant under the positive timeflow ;, so by
the Minimax Principle minimax( f, «) isacritical value of f.

In general given a family F of closed subsets F' of M invariant under
¢ for t > 0, we shall say that “F hangs up at the level ¢” to indicate that
c = minimax(f, F). If further S C f~1(c) then we will say “F hangs up on
S™ if given any neighborhood U of S in M thereisan e > 0 such that some F’
in Fisincludedin M._. UU.

10.1.1. Refined Minimax Principle. Let F be a family of closed
subsets of M that is invariant under the positive time flow ¢; generated
by —V f. If F hangs up at the level ¢, then in fact it hangs up on C..

Proor. SinceC ispointwiseinvariant under ¢,, given any neighborhood
U of C. there is a neighborhood O of C. with ¢1(O) C U. By the First
Deformation Theorem wemay choosean e > 0 sothat o1 (M4 \O) C M. _..
Choose F'in F with ' C M... Then ¢, (F) € F, and since F' isthe union of
FN(Mge\O)and FFNO it follows that

P1(F) € 1(Mege \O) Ui (0) € M cUU .

223
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To get still more precise results we assume f isaMorse function.

10.1.2. Theorem. Let f : M — R be a Morse function and
assume that « € [(Y,Yy), (M, My)] hangs up at the level ¢ of f, where
¢ > max (f|My). Assume that f has a single critical point p at the level
¢, having index k, and let e* denote the descending cell of radius /€ in
some Morse chart of the second kind at p. Then for e sufficiently small
« has a representative h with im(h) C M._. U e¥.

PrOOF. Since ¢ > max (f|M,), for e smal My, C M,._. and we
can choose a neighborhood U of p with U C M., .. Since by the preceding
proposition « hangs up on C. = {p} we can find a representative g of « with
im(g) € M. UU C M.;.. But by an earlier result there is a deformation
retraction p of M. onto M._.Ue*. Thenh = po g also represents o and has
itsimagein M._.UeF.

10.1.3. Remark. Of courseif thereare severa critical pointspy, ..., ps a
thelevel ¢ having indices k4, . . ., ks, then by asimilar argument we can find a
representative of o with itsimagein M._. Uef U ... UePs.

We will call (Y, Y,) asmooth relative m—manifold if Y\ Yy isasmooth
m—dimensional manifold. In that case, by standard approximation theory, we
canapproximate 1, by amap i that agreeswith , on 4~ (M._.) (andinparticular
on YY), andisasmooth map of Y\ h=1(M._.) into e*. Since e isconvex this
approximating map % is clearly homotopic to % rel Yy. In other words, when
(Y,Yp) a smooth relative m—manifold we can assume that the map i of the
above theorem is smooth on A =1 (e*).

10.1.4. Corollary. If (Y,Yy) a smooth relative m—manifold then
m > k.

PROOF. We can assume the h of the theorem is smooth on h=!(e*).
Then by Sard’'s Theorem [DR,p.10] if m < k the image of & could not cover
¢ * and we could choose a z in ¢ ¥ not in the image of h. Since e * — {2}
deformation retracts onto de* C M._., o would have a representative with
image in M._., contradicting the assumption that o« hangs up at the level c.
Thusm < kisimpossible. =

10.1.5. Corollary. If(Y,Y}) is a smooth connected 1—manifold and
« is non-trivial (i.e., no representative is a constant map), then k = 1.

ProoOF. By the preceding corollary we have only to rule out the possi-
bility that & = 0. Butif £ = 0 then e¥ = {p}, so M._. U e* isthe digoint
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union of M. . and {p}. Since Y is connected either im(h) C {p} or else
im(h) C M._.. But thefirst alternative contradicts the non-triviality of « and
the second contradicts that o hangs up at thelevel ¢. =

10.1.6. Corollary. If f has two distinct relative minima, xo and x1,
in the same component of M then it also has a critical point of index 1
in that component.

Proor. TakeY =1,Y, = {0,1}, My = {xo,x1}. We can assume
that f(zo) < f(x1). By theMorse Lemmathereisaneighborhood U of x; not
containing zo suchthat f(x) > f(z1) + e foral = in 9U. Since any path from
xo to 21 must meet QU , it follows that minimax(f, o) > f(xz1) = max(f|My)
and we can apply the previous corollary. =

10.1.7. Remark. Hereisanother proof: the second Morse inequality can
be rewritten as 11 > by + (1o — bo). If M is connected then by = 1, so if
o > 1then g > 1.

10.1.8. Corollary. If M is not simply connected then f has at least
one critical point of index 1.

Proor. TakeY = S!, Y and M, empty, and choose any non-trivial
free homotopy class o of mapsh : S' — M. Or, let 2, be aminimum point of
f inanon simply connected component of M,Y = 1,Y, = {0,1}, and let «
be anon-trivial element of IT; (M, zp). =

10.1.9. Remark. This does not quite follow from the Morse inequality
w1 > by. Thetroubleisthat H, (M) isthe “abelianized” fundamental group,
i.e., IT; (M) modulo its commutator subgroup. So if the fundamental group is
non-trivial but perfect (e.g., the Poincaré Icosohedral Space) then b, = 0.

10.1.10. Corollary. If M is connected and f has no critical points
with index k in the range 1 < k < m thenI1;(M) is trivial fori = 1,...m.

PrOOF. If aisanon-trivial eement of I1; (M) = (S, ), (M, )] then
« hangs up on acritical point of index k, where1 < k£ <j. =
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10.2. Linking Type

Recall that, under our basic assumptions (a), (b), and (c) of Section 9.1,
aMorse function f : M — R gives us a homotopy cell decomposition for the
M,. Each time we pass a critical level ¢ with a single critical point of index
k, M.y has as adeformation retract M._. with a k—cell attached. We would
like to use this to compute inductively the the homology of the M, and hence
eventually of M which isthelimit of the M,.

L et usreview the general method involved. Let A beahomotopy spherical
complex, g : S""! — A an attaching map, and X ~ A U, ¢* (by which we
mean X has A U, e* as a deformation retract). We would like to compute
the homology of X from that of A. We write G : (D*,S"') — (X, A)
for the characteristic map of the attaching, so g = G|S"~!. Now G induces a
commutative diagram for the exact homology sequences of thepairs (D¥, S~ 1)
and (X, A),

9]
Hm(Dk,Sk_l) . m_l(sk—l) SN m—l(Dk) -
| i) | a0 | v
o
Hn(X,A) - m—1(A) - m-1(X) —

Since G is a relative homeomorphism, H,,(G) : H,,(D* S"1) —
H,.(X,A) is an isomorphism. On the other hand D* is contractible and
hence al the H,,(D*) are zero, and it follows that the boundary maps 0 :
H,,(D* Sy — H,,_(S*!) are aso isomorphisms. Thus in the ex-
act sequence for (X, A) we can replace H,,,(D*,S*"1) by H,,_1(S*"!) and
O : Hy(DF, S 1) — H,,_1(A) by Hy—1(g) : Hypo1(S¥7Y) — Hp1(A),
getting the exact sequence

Hm( ) Tm jm Hm—l( )
e Ho (S D H (A) s Ho (X )~ Hypy (S

Whenm # k, k — 1 then H,,,(S*"!) and H,,,_,(S"™'), are both zero, so
H,,(X) =~ H,,(A). On the other hand for the two specia values of m we get
two short exact sequences

0——Hy(A)——H(X)——Ker(Hy-1(9)) —0

and

0——Im(Hy_1(9)) — Hr-1(A)——Hj_1(X)——0

from which we can in principle compute Hy(X) and Hy_1(X) if we know
Hi—1(g)-



10. Advanced Critical Point Theory 227

Unfortunately, in the Morse theoretic framework, there is no good al-
gorithm for deriving the information needed to convert the above two exact
sequences into a general tool for computing the homology of X. As aresult
we will now restrict our attention to what seems at first to be a very special
case (called “linking type”) where the computation of H, (X ) becomestrivial.
Fortunately, it is a case that is met surprisingly often in practice.

A choice of orientation for R* is equivalent to a choice of generator
[D¥,SF~1] for Hy(D*,SP~!;Z), and we will denote by [e*, De*] the corre-
sponding generator for Hy(e*, de*; Z) and for Hy (X, A;Z). For a generd
coefficient ring R we may regard Hy (X, A; R) asafree R module with basis
[e*, e*]. The following definition is due to M. Morse.

10.2.1. Definition. We say that (X, A) is of linking type over R if
[e, 0e*] isiin the kernel of Oy : Hp(X,A;R) — Hi_1(A;R), (so that in
fact 0, = 0), or equivalently if [e*, Oe*] isin theimage of ji : Hi(X;R) —
Hi(X,A;R) Inthiscasewe call any 1 € Zi(X;R) (or [u] € Hi(X;R))
such that ji,([u]) = [e*, De*] alinking cycle for (X, A) over R.

10.2.2. Remark. Clearly another equivalent condition for (X, A) to be
of linking type is that the fundamental class [S"~!] of S*~! bein the kernel of
Hi—1(g) : Hp—1(S*71) = Hi—1(A)

10.2.3. Theorem. If (X, A) is of linking type over R and [u] €
Hi(X;R) is a linking cycle for (X, A) then H,(X;R) = H.(A; R)®R[].

ProOF. From the exact sequence for (X, A),

41 im Jm

— Hpq1 (X, A)a—>Hm(A)—>Hm(X)—>Hm(X, A) —

sinced,, = 0anddl H,,(X, A) = 0, except perhapsfor m = k, k — 1, we have
H,,(X) = H,,(A) except for m = k. Tekingm = k and using 9, = 0 and
Hy.(X, A) = R[e*, 9e*], we have the short exact sequence

Jk

0 — Hy(A)——H,(X)——Re", 9ek] — 0,

andthisisclearly splitby themapr[e®, de*] — r[u] of Hp (X, A)to Hp(X).

Nowlet A = Xy C X; C ... C X,, = X beahomotopy cell decompo-
sition for (X, A); say X; has as adeformation retract X;_; Uy, eFi. We shall
say that thisis a cell decomposition of linking type if each pair (X;, X;-1)
is of linking type. By an easy induction from the previous theorem we see that
theinclusionsi, : X, — X induceinjections H,(is) : H.(X;) — H.(X). So
for such a homotopy cell decomposition we will identify each H, (X,) with a
sub-module of H,(X), and therefore identify alinking cycle [u] € Hy,(Xy)
for thepair (X,, X,—1) with an element of Hy, (X). With these conventionswe
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define a set of linking cycles for the above homotopy cell decomposition of
linking type to be a sequence of homology classes 1, . . ., u, such that [p] is
in the submodule Hy, (X;) of Hy,(X) and H.(j¢)([1e]) = [e¥¢, DeF*], where
H.,(j¢) denotesthe projection Hy, (X¢) — Hy, (X, X¢—1). Then by induction
from the preceding theorem,

10.2.4. Theorem. With the above assumptions and notation:

H,(X) = H.(A) & P Rlu).
1=1

Now let us specialize to the homotopy cell decompositions associated to
aMorse function f : M — R that is bounded below and satisfies Condition
C on a complete Riemannian manifold. Let a be a non-critical value of f and
let py...,p, bedl the critical points of finite index of f below the level a,
ordered so that ¢; = f(p;) < ci1. Assume p; hasindex k;, and let e* denote
the descending cell in some Morse coordinate system at p;. We have seen that
M, has a homotopy cell decomposition® = Xy C X; C ... C X,, = M,
with X, having as a deformation retract X; Uy, €. (In the generic case
that p; is the unique critical point at its level ¢; we may take X; = M., .,
1=0...n—1.) Wesay that the critical point p; is of linking type over R
if (X;41,X;) isof linking type over R. And we say that the Morse function
f s of linking type over R if dl itscritical pointsare of linking type over R.
Inthiscase welet [u;] € Hy,(M,) denote alinking cycle for (X;11, X;), and
we cal [u;] alinking cycle for the critical point p;.

O

The descending cell €
and the linking cycleu
a a critica point p

By the previous theorem we have: H,(M,) = @, R[u:]. Note that
if a < b aretwo regular values of f then in particular it follows that H.(M,)
injectsinto H.(Mp). Let {a,} be aseguence of regular values of f tending to
infinity. Then clearly M istheinductive limit of the subspaces M, . Hence
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10.2.5. Theorem. Let f : M — R be a Morse function of linking
type over R that is bounded below and satisfies Condition C on a com-
plete Riemannian manifold. For each critical point p of f let k(p) denote
the index of p and let i, € Hy,p,)(M;R) be a linking cycle for p over R.
Then H.(M;R) is a free R module generated by these [fi,].

10.2.6. Corollary. If a Morse function on a compact manifold is of
linking type over a field then it is a perfect Morse function.

Itisclearly important to haveagood method for constructing linking cycles.
In the next section we will study a very beautiful criterion, that goes back to
Bott and Samelson, for recognizing when certain geometric cycles are linking
cycles.

10.3. Bott-Samelson Type

In this section our coefficient ring for homology, R, is for simplicity as-
sumed to be either Z or Z,. Y will denote a compact, connected, smooth
k—manifoldwith (possibly empty) boundary 0Y. Werecall that Hy (Y, 0Y'; Z5) ~
Z,. Thenon-zero element of Hy (Y, 0Y'; Z,) isdenoted by [Y, Y] andiscalled
the fundamental class of (Y,0Y") (over Zy). We say that “Y is oriented over
Zy". Over Z there are two possibilities. Recall that Y is called orientable if it
has an atlas of coordinate charts such that the Jacobians of all the coordinate
changes are positive functions, otherwise non-orientable. If Y isnon-orientable
then Hy (Y, 0Y;Z) = 0, whileif Y isorientablethen Hy(Y,0Y;Z) ~ Z. Inthe
latter case, achoice of one of the two possible generatorsis called an orientation
of Y, and Y together with an orientation is called an oriented k—manifold. The
chosen generator for Hy(Y,0Y;Z) is again denoted by [Y, 0Y] and is called
the fundamental class of the oriented manifold over Z (its reduction modulo 2
is clearly the fundamental class over Z,). Either over Z or Z, the fundamental
class [Y, Y] has the following characteristic property. If A isak—disk em-

bedded in the interior of Y, then theinclusion (Y,0Y) — (Y, Y\ ﬁ) induces
amap Hi(Y,0Y) — Hi(Y,Y \ ﬁ). On the other hand we have an excision
isomorphism Hy(Y,Y \ ﬁ) ~ Hi(A,0A). Then, under the composition of
these two maps, the fundamental class [Y, 0Y'] is mapped onto +=[A, 0A].

10.3.1. Proposition. Let p be a non-degenerate critical point of
index k and co-index [, lying on the level ¢ of f : M — R, and let e* and
e! be the descending and ascending cells of radius € in a Morse chart for f
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at p. Let Y be a compact, smooth k—manifold with boundary, oriented
over R and ¢ : (Y,0Y) — (M., M._.) a smooth map, such that:

(1) im(p) N £ (c) = {p},

(2) ¢~ (p) = {yo}, and

(3) ¢ is transversal to €' at yjo.

Then Hy(p) : H,(Y,0Y) — Hp(M., M._.) maps [Y,0Y] to £[e¥ de].
(Here, as in the preceding section, [e¥,de¥] denotes the image of the
fundamental class of (e*,0e*) in Hy(M,., M._.) under inclusion.)

PrOOF. By (1) and (2), if y # yo then f(p(y)) < ¢; henceif N is
any neighborhood of y, then, for ¢ small enough, ¢ maps (Y,Y \ N) into
(M., M._.). Inthe given Morse coordinates at p let P denote the projection
onto the descending space R* along the ascending space R'. Then (3) saysthat
Po(Dy),, mapsTY,, isomorphically onto T'(¢*),,, so by the Inverse Function
Theorem, P o maps any sufficiently small closed disk neighborhood A of
yo in'Y diffeomorphically onto the neighborhood e* of p in R*. And by the

first remark in the proof we can assume further that ¢ maps (Y,Y \ ﬁ) into
(M., M._.). Taking A small enough, we can suppose that both ¢ and P o ¢
map A into some convex neighborhood of p, so by a standard interpolation
argument we can find a smooth map ¢ : (Y,0Y) — (M., M._.) that agrees
with Po @ in A, agreeswith ¢ outside aslightly larger neighborhood of y,, and
is homotopic to ¢ rel Y. We now have the commutative diagram:

(Y,0y) —— (M, M,_.)
VY \A) —2 (M. Ueék, M,_.)
(A,08)  —— (e*, Dek)

where inc indicates an inclusion, and ezc an excision.

Now, since » isadiffeomorphismof (A, OA) onto (e, de*), it followsthat
Hi.(@)([A,0A]) = *[e*, 0e*]. But, since ¢ and ¢ are homotopic, Hy(¢) =
Hy(p), and the conclusion follows from the diagram and the characteristic
property of fundamental classes stated above. =

10.3.2. Definition. LetY beacompact, smooth, connected £—manifold
(without boundary!) that is oriented over R, and ¢ : Y — M asmooth map.
If p is anon-degenerate critical point of index k of f : M — R, then we call
(Y, @) a Bott-Samelson cycle for f at p (over R)if fop : Y — Rhasa
unique non-degenerate maximum that is located at yo = ¢~ !(p). We say that
the critical point p is of Bott-Samelson type (over R) if such a pair (Y, )
exists, and we say aMorse function f is of Bott-Samelson type over R if all of
its critical points are of Bott-Samelson type.
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10.3.3. Theorem. If (Y, ) is a Bott-Samelson cycle for f at p then
H.(p)([Y]) is a linking cycle for f at p.

Proor. Immediate from the preceding proposition and the definition of
linking cycle. Conditions (1) and (2) of the proposition are obviously satisfied,
and (3) is an easy consequence of the non-degeneracy of fop at p=(p). =

10.3.4. Corollary. Let f: M — R be a Morse function that satisfies
Condition C and is bounded below on a complete Riemannian manifold
M. If f is of Bott-Samelson type over R then it also of linking type over
R. If for each critical point p of f, (Y, ¢,) is a Bott-Samelson cycle for f
at p over R then, for a regular value a of f, H.(M,; R) is freely generated
as an R-module by the H.(p,)([Yp]) with f(p) < a, and H,.(M;R) is
freely generated by all the H. (pp)([Yy]).

10.3.5. Remark. Supposeall the critical points of index lessthan or equal
to k of aMorsefunction f : M — R are of Bott-Samelson type. Doesit follow
that, for [ < k, by(M) = u;(M)? By the following proposition the example
of afunction on S' with two local minima and two local maxima shows thisis
already falsefor k = 0.

10.3.6. Proposition. If f: M — R is a Morse function then every
local minimum (i.e., critical point of index zero) is of Bott-Samelson type.
If M is compact then a local maximum {p} of f is of Bott-Samelson type
over R provided that the component My of {p} in M is oriented over R
and p is the unique global maximum of f|Mj.

Proor. |If zialoca minimumthenY = {x} isan oriented, connected
O0—manifold andif p istheinclusion of Y into M then (Y, ¢) isaBott-Samelson
cyclefor f at z. Similarly, inthelocal maximum case, provided M, is oriented
over R and p isthe unique global maximum of f| M, then theinclusion of M,
into M isaBott-Samelson cyclefor fatp. =

10.3.7. Corollary. A smooth function on the circle S' is a Morse
function of Bott-Samelson type provided that its only critical points are
one non-degenerate local minimum and one non-degenerate local maxi-
mum.

10.3.8. Corollary. Let M be a smooth, compact,connected surface,
oriented over R, and let f : M — R be a Morse function with a unique
local maximum. A necessary and sufficient condition for f to be of Bott-
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Samelson type is that for each saddle point p of f there exist a circle
S' immersed in M that is tangent to the descending direction at p and
everywhere else lies below the level f(p). In this case the fundamental
classes of these circles will generate Hy(M).

10.3.9. Remark. This gives another proof that a surface of genus g has
first betti number 2g. Thereis a standard embedding of the surface in R® with
the height function having 2¢ saddles and for which the corresponding circles
are obvious (if you look at the illustration of the case g = 3 in Section 9.7, the
circles stare out of the page).



Chapter 11
The Calculus of Variations

Let X be acompact Riemannian manifold and let M, denote some space
of smooth mappings of X into amanifold Y, or more generally some space of
smooth sections of afiber bundle £ over X withfiber Y (thecase F = X x Y
givesthemaps X — Y).

A Lagrangian function L for M, of order k isafunction L : My —
C>*(X,R) that is a partia differential operator of order k. This means that
L(y) : X — R can bewritten as afunction of the partial derivatives of ¢ up to
order k with respect to local coordinatesin X and E. (More precisely, but more
technically, L should be of the form F o j,, where j;, : C*°(E) — C>°(J*E)
isthe k—jet extension map and F is asmooth map J*(E) — R.)

Given such a Lagrangian function L we can associate to it a rea valued
function £ : My — R, called the associated action integral, (Or action
functional) by L(¢) = [ L(y) du(z), where dy is the Riemannian volume
element.

The general problem of the Calculus of Variations is to study the “critical
points’ of such action integrals in the following sense. Let ¢ € M. Given
a smooth path ¢, in M, (in the sense that (¢,z) — ¢:(x) is smooth) we can
compute (4),_, £(¢:). If thisis zero for all smooth paths ¢, with ¢y = ¢
then ¢ iscalled acritical point of the functional £. We shall see below that the
condition for ¢ to be a critical point of £ can be written as a system of partial
differential equations of order 2k for ¢, called the Euler-Lagrange equations
corresponding to the Lagrangian L. Of course if we can interpret M, as a
smooth manifold and £ : My — R asasmooth function on this manifold, then
“critical point” inthe above sensewill be equivalent to critical point in the sense
we have been using it previously, namely that d£,, = 0. Moreover in this case
the Euler-Lagrange equation is equivalent to V.L(y) = 0.

To see what the Euler-Lagrange equation of a k-th order Lagrangian L
looks like we consider the following simple example: Let 7 = (0,1) and
Q=1I"CR", My=C>(£,R), the space of smooth functions with compact
supportin €2, and L(u) = L(ji(u)) = L(u, D*u), i.e., Lisafunction of v and
its partial derivatives D“u up to order k. Here o = (v, . .., o, ) iS@n n-tuple
of non-negative integers, || = a3 + ... + a,, and

ololy,

DYy= ——mM8M.
0%q,y -+ 0%q,

If u, h € My, thenu; = v+ th € Mg, and
L(u+th) = L(u+ th, D + tD“h).

233
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Since h and all its partial derivatives vanish near OS2, there are no boundary
terms when we integrate by parts in the following:

dL.u(h) = (%)t_o (L£(u + th))

oL oL
:/Q{%“;a(pau)l) h} dzx

oL o 0L
:/Q{%-Fg(—l)l 'D (a(Dau)>}hda:

So the Euler-Lagrange equation is

oL e AL\
a F2.(-VD (a(Dau))_O

[e%

In the sameway, if My = C2°(Q2, R™), then the Euler-L agrange equations for
u=(up,...,upy)ae

oL oL
oL _plalpa (9L ) _ 1<i<
e+ DD (Gps) =0 1sism

«

which is a determined system of m PDE of order 2k for the m functions
ULyeooyUm-

In general M, is the space of smooth sections of a fiber bundle £ on a
compact Riemannian manifold X . Tocomputethefirstvariation, (£ ), L (u.),
it sufficesto computeit for deformation u, having “small support”, i.e., asmooth
curve u; € Mg such that ug = v on dl of X, and v, = u outside a compact
subset of a coordinate neighborhood U. One standard method for computing
the first variation is to choose a trivialization of £ over U so that, locally,
smooth sections of E are represented by R™-valued maps defined on an open
neighborhood of R". Here n = dim(X) and m is the fiber dimension of E.
Then the Euler-Lagrange equation of £ can be computed locally just as above.
If the Lagrangian L isnatural thenitisusually easy to interpret thelocal formula
thisleadsto in an invariant manner. A second standard method to get the Euler-
L agrange equationsisto use covariant rather than ordinary derivativesto get an
invariant expression for (4 );_oL(u;) directly. Both methodswill beillustrated
below.

Many important objects in geometry, analysis, and mathematical physics
are critical point of variational problems. For example, geodesics, harmonic
maps, minimal submanifolds, Einstein metrics, solutions of the Yamabe equa-
tion, Yang-Mills fields, and periodic solutions of a Hamiltonian vector field.

Now the Euler-Lagrange equations of a variational problem are usually
a highly non-linear system of PDE, and there is no good general theory for
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solving them—except going back to the variational principle itself. Often we
would be happy just to prove an existence theorem, i.e., prove that the set C, of
critical pointsof £ : My — Risnon-empty. Can we apply our general theory?
Sometimes we can. Here are the steps involved:

(1) Complete M to a complete Riemannian manifold M of sections of E.
Usually thisis some Sobolev completion of M. Choosing the correct one
isanart! For (2) to work the Sobolev norm used must be “strong enough”,
while for (5) to work this norm cannot be “too strong”. In order that both
work the choice must be just right.

(2) Extend £ to asmooth map £ : M — R. (If the correct choice is madein
step (1) thisisusually easy.)

(3) Boundedness from below. Show that £ is bounded below. (Usually easy.)

(4) Verify Condition C for £. (Usudly adifficult step.)

(5) (Regularity) Show that a solution ¢ in M of dﬁw = O isactualy in My,
and henceisacritical point of £. Thisisusualy adifficult step. Inthesim-
plest case L is a homogeneous quadratic form, so that the Euler-Lagrange
equations are linear. Then technically it comes down to proving the ellip-
ticity of these equations. In the general non-linear case we again usually
must show some sort of ellipticity for the Euler-L agrange operator and then
prove aregularity theorem for a class of elliptic non-linear equations that
includes the Euler-Lagrange equations.

Ingeneral, for all but thesimplest Calculusof Variationsproblems, carrying
out this program turns out to be atechnical and difficult processif it can be done
at all. Many research papers have consisted in verifying all the details under
particular assumptions about the nature of L. Often some specia tricks must
be used, such as dividing out some symmetry group of the problem or solving
a“perturbed” problem with Lagrangian L and letting e — 0 ([U],[SU]).

In section 1 we will discuss Sobolev manifolds of sections of fiber bundles
over compact n-dimensional manifolds needed for step (1) of the program. We
will only give the full details for the case n = 1, needed in section 2 where we
work out in complete detail the above five steps for the the geodesic problem.
But the geodesic problem is misleadingly easy. To give some of the flavor and
complexity of the analysis that comes into carrying out the program for more
genera Calculus of Variations problems we study a second model problem in
section 3; namely the functional

J(u) = /X IVull? + futdolg)

with constraint [, |u[Pdv(g) = 1 on acompact Riemannian manifold (X, g).
The corresponding Euler-Lagrange equation is

Au+ fu = P!
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for someconstant \, an equation that hasimportant applicationsto the problem of
prescribing scalar curvature. But thisequation can also beviewed asan excellent
model equation for studying the feasibility of the above general program. For
example, aswe shall see, it turns out that whether or not Condition Cis satisfied
depends on the value of the exponent p.

11.1. Sobolev manifolds of fiber bundle sections

If M isacompact n-dimensional manifold and £ is a smooth vector bun-
dle over M then we can associate to £ a sequence of hilbert spaces Hy ()
of sections of £. Somewhat roughly we can say that a section o of £ isin
Hy. (&) if (with respect to local coordinates in M and alocal trivialization for
€) dl its partia derivatives of order less than or equal to & are locally square
summable. Moreover these so-called Sobolev spaces are functorial in the fol-
lowing sense: if 7 is a second smooth vector bundle over M and ¢ : £ — 7
is a smooth vector bundle morphism, then ¢ — ¢ oo is a continuous linear
map Hi(p) : Hp(§) — Hi(n). When k > n/2 it turns out that Hy () isa
dense linear subspace of the Banach space C° (&) of continuous sections of ¢
and moreover that the inclusion map Hy(£) — C(¢) isa continuous (and in
fact compact) linear map. In this case Hy. is aso functorial in alarger sense;
namely, if ¢ : £ — nisasmooth fiber bundle morphism then o — ¢ oo isof
course not necessarily linear, butitisa smooth map Hy(¢) : Hi(§) — Hg(n).
It follows easily from thisthat, for afiber bundle E over M, when k > n/2 we
can in anatural way define ahilbert manifold Hy(E) of sectionsof E. Hy(FE)
is characterized by the property that if avector bundle ¢ is an open sub-bundle
of F, then Hy(§) is an open submanifold of Hy(FE); in fact these Hy(£) give
a defining atlas for the differentiable structure of Hy(E). When F' is another
smooth fiber bundleover M and ¢ : E — F isasmooth fiber bundle morphism
then o — @oo isasmooth map Hy(¢) : Hp(F) — Hg(F). Thus when
k > n/2 we can “extend” H}, to afunctor from the category of smooth fiber
bundles over M to the category of smooth hilbert manifolds.

In this section we will give the full details of this construction for the case
k=1andn = 1 (so M iseither the interval I or the circle S'). A complete
exposition of the general theory can be found in [Pab].

We begin by considering the case of atrivial bundle¢ = I x R", sothat a
section of £ isjust amap of I into R”.

Wewill denoteby Hy (I, R™) thehilbert space L2 (I, R™) of squaresummable
maps of the unit interval 1 into R” For o, A € Hy(I,R"™) wedenotetheir inner
product by (o, A),, fo ))dt,and [|o |2 = (0,0),.

Recall that acontlnuous map oc:I —-R" iscalled absolutely continuous
if o’ existsalmost everywhere, andisin L' (1, R"™) (i.e, fol o’ (t)]] dt < 00). In
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thiscasea(t) (0)+ [ o’ (s) ds—and conversely if f € L'(I,R") thent

P+ fO s)ds |sabsol utely contlnuous and has derivative f. Since I hasfinite
measure, bytheSchwarZ|nequaI|tyL1(I R") D L*(I,R") = Ho(I,R"). The
set of absolutely continuous maps o : I — R™ such that o’ isin Hy(I,R") is
called the Sobolev space H,(1,R").

11.1.1. Proposition. Hy(I,R") is a hilbert space with the inner
product

(A a); = (A0),0(0)) + (N, 0),-

ProOF. This just says that the map A — (\(0), X) of Hi(I,R") to
R" @ Hy(I,R") isbhijective. Theinverseis(p,o) — p + fo s)ds. =

11.1.2. Theorem (Sobolev Inequality). Ifo isin Hi(I,R"™) then

1
lo(®) = o)l < [t —s|” [lo”]l,

1
<t=sl”llof,.

Proor. If h is the characteristic function of the interval [s,¢] then
||h]|2L2 = fol h2(t)dt = ftldt = |t - s] hence by the Schwarz inequality

t
lo(t) o ()]l = || [ o' () da| = | f, hlz)o'(x) da]| < [t — 5| o

Mo

11.1.3. Corollary. |of., <2|o]];.

Proor. [o(0) < o]l

1 hence

lo@I < la(0)]| + llo(Z) = a(0)]]
< [lo ) + eIz loll, < 2[oll,-

11.1.4. Theorem. The inclusion maps of Hy(I,R") into C°(I,R™)
and into Ho(I,R™) are completely continuous.

Proor. Sincetheinclusion C°(I,R™) — Hy(I,R") is continuous, it
will suffice to show that H;(I,R") — C°(I,R™) is completely continuous.
Let S be bounded in H;(1,R™). We must show that .S has compact closure in
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C°(1,R™) or, by the Ascoli-Arzela Theorem, that S is bounded in the C° norm
(Il ll») and is equicontinuous. Boundedness is immediate from the preceding
corollary, whilethe Sobolev Inequality impliesthat S’ satisfiesauniform Holder
condition of order % and so a fortioriisequicontinuous. =

We will denote by S (I, R™) the vector space of al functionso : I — R".
Asusua weidentify S(1, R™) with thevector space of all sectionsof the product
bundle I x R™. Given asmooth map ¢ : I x R* — I x RP of the form
(t,z) — (t,(x)), with each ¢, alinear map of R" — RP, we can regard
© as a smooth vector bundle morphism between the product bundle I x R"
and I x RP, hence it induces alinear map ¢ of S(I,R"™) to S(I,RP); namely
¢(0)(t) = @i(a(t)). Clearly ¢ is a continuous linear map of C°(1,R™) to
C°(I,RP) and also a continuous linear map of Ho(I,R") to Ho(I,RP). If
o € C°(I,R") is absolutely continuous then, if o is differentiableat t € I so
is@(o), and (o) (t) = pe(o’(t)) + (%)Szt@(s,a(t)). It follows that @ is
aso absolutely continuous and isin Hy(RP) if o isin H;(R™). Thus ¢ isaso
a continuous linear map of H;(I,R") to H1(I,R?). Of course it follows in
particular that if n = p and ¢ is avector bundle automorphism of 7 x R" (i.e,,
each ¢, isin GL(n, R)), then ¢ isan automorphismof C°(1,R™), of Hy(I,R™),
and of H,(I,R").

Now suppose € is a smooth vector bundle over I. Since any bundle over
I istrivia, we can find a trivialization of &, i.e., a vector bundle isomorphism
o of the product vector bundle I x R™ with £&. Then o — ¢ oo isabijective
linear map ¢ between the space S(I,R"™) of all sections of / x R™ and the
space S(&) of al sections of £&. This map ¢ will of course map C°(I,R")
isomorphically onto C°(¢), but moreover we can now define hilbertable spaces
Ho(¢) and H; (€) of sectionsof £ with Hy(€) € C%(€) € Hy(€), by specifying
that  isaso an isomorphism of Hy (I, R™) with H;(£) and of H; (I, R™) with
Hy(&). By theaboveremarksit isclear that these definitions are independent of
the choice of trivialization ¢. Moreover it also follows from these remarks that
Hy and H, are actualy functorial from the category VB(/) of smooth vector
bundles over I and smooth vector bundle morphisms to the category Hilb of
hilbertable Banach spaces and bounded linear maps. Thatis, if o : £ — nisa
morphism of smooth vector bundles over I then ¢ : S(§) — S(n), 0 — poo
restricts to morphisms (i.e., a continuous linear maps) Hy({) — Ho(n) and
Hy(£) — Hi(n).

From the corollary of the Sobolev inequality we have:

11.1.5. Theorem. For any smooth vector bundle & over I the inclu-
sion maps of Hy(€) into C°(€) and into Hy(§) are completely continuous.

Let FB(/) denote the category of smooth fiber bundles and smooth fiber
bundle morphisms over I and let Mfld denote the category of smooth hilbert
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manifolds and smooth maps. Note that we have weakening of structure functors
that “include” VB(I) intoFB(7) and Hilb into Mfld. Our goal isto “extend”
H, to afunctor from FB(!/) to Mfld. For technical reasonsit is expedient to
carry out this process in two steps, extending H; first on morphisms and only
then on objects. So we introduce two “mongrel” categories, FVB(I) and
MHilb. The objects of FVB(/) are the smooth vector bundles over I, but
its morphisms are fiber bundle morphisms. Similarly, the objects of M Hilb
are hilbertable Banach spaces, and its morphisms are the smooth maps between
them.

11.1.6. Theorem. If & and n are smooth vector bundles over I
and ¢ : & — n is a smooth fiber bundle morphism then o — oo is a
smooth map C°(p) : C°(&) — C°(n) and it restricts to a smooth map
Hy(p) : Hi(¢§) — Hi(n). Thus Hy extends to functor from FVB(I) to
MHilb.

Proor. Asinthe case of vector bundle morphisms we can assume that
¢ and n are product bundles I x R™ and I x RP respectively,sop : I x R" —
I x RP is a smooth map of the form (¢,z) — (t,+(x)). Then as above
C%%p) : C°(I,R™) — C°(I,RP) isdefined by C°(p)(o)(t) = ¢¢(a(t)), and
it is easy to check that C(y) is a differentiable map and that its differential is
given by DC°(0)5(A)(t) = D1, , ., (A(t)). If o is absolutely continuous
then, for ¢ in I such that o'(t) exists, C°(p)(0)(t) = Dig,, ., (0 (t)) +
(%)S:tgp(s, o(t)). It followsthat C°(¢)(o) isaso absolutely continuous and
that if o isin Hy(R") then C°(p)(o) isin Hi(RP). In other words C°(y)
restrictsto amap Hi(yp) : H1(R") — H;(RP), and it is again easy to check
that this map is differentiable and that its differential is given by the same
formulaas above. Then by an easy induction we seethat H; () is smooth and

that D™ H1(2)o (At -+ Am) (£) = D00 o i (E), s A (1),

11.1.7. Remark. Note that the same does not hold for the functor H!
For example define o : I x R — I x Rby (¢,x) — (t,22). Defineo : I — R
by o(t) = t—3, soclearly ¢ € Hy(I,R). But ¢;(c(t)) = t~=, which is not
square summable.

Now suppose that E is a smooth fiber bundle over 7. A smooth vector
bundle ¢ over I iscalled a vector bundle neighborhood in E, (abbreviated to
VBN), if the total space of £ isopenin thetotal space of £ and if the inclusion
¢ — E isafiber bundle morphism. Of course then C°(¢) isopenin CY(E),
and for any o in C°(¢) wewill say that ¢ isaVBN of o in E.

11.1.8. Proposition. If E is a vector bundle and £ is a VBN in E
then C°(¢) is a smooth open submanifold of the Banach space C°(E),
and similarly H;(§) is a smooth open submanifold of the Hilbert space
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Hy(E).

ProoF. Sincetheinclusioni : £ — E isafiber bundle morphism, by
the preceding Theorem the inclusions C°(i) : C°(¢) — C°(E) and Hy(i) :
H, (&) — Hy(n) aresmooth, and in fact by the Inverse Function Theorem they
are diffeomorphisms onto open submanifolds. =

/\’_/\
N\

A VBN & of the secti on o of the
fiber bundle E over the u nit interval |

Given any smooth section o of £ wewill now see how to construct aVBN
in £, having o asits zero section. We proceed as follows.

Let T'F(E) denotethe subbundle of T'E defined asthe kernel of the differ-
ential of the projection of E onto I. T'F(FE) iscaled the “tangent bundle along
the fibers of E” since, for any fiber E; of F, thetangent bundle, T'(E,), isjust
the restriction of TF'(E) to E; . This allows us to define a smooth “exponen-
tia” map Exp of TF(E) into E suchthat if e € E, then Exp(TF(E).) C E;.
Namely, choose acompl ete Riemannian metric for thetotal spaceof E. Thisin-
duces acomplete Riemannian metric on each fiber F;, and hence an exponential
map Exp, : TF(FE)|E; — E;, and wedefineExp : TF(E) — FE to be equal
to Exp, on TF(E)|E;. Thefact that solutions of an ODE depend smoothly on
parameters insures that Exp is a smooth map. (Note: Exp will not in generd
agree with the usual exponential map of E sincethefibers F; are not in general
totally geodesicin E.)

Given a smooth section o of E we define asmooth vector bundle £ over
Iby E° = o*(TF(E)). Notethat, fort € I, Ef = TF(E) 1) = T(Et)o(1)-
We define a smooth fiber bundle morphism £ : E7 — E by £(v) = Exp(v) =
Exp,(v) forv € E7. Sinceim(o) iscompact we can choosean € > 0 lessthan
the injectivity radius of E; at o(t) for al ¢ in I. Then £ maps E?, the open
e-disk bundle in £, onto an open subbundle £ of E; namely, fort € I, & is
theball of radiuse in E; about o (¢). Finaly let 6 denote a diffeomorphism of R
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onto (—e, €). Then we can define afiber bundleisomorphism© : E7 ~ E? by
O(v) = 0(||v]|)(v/(1+||v||), and composing thiswith £ gives us afiber bundle
isomorphism £°0 : £ ~ £. This proves:

11.1.9. VBN Existence Theorem. If F is any fiber bundle over I
and o is a smooth section of E then there is a vector bundle neighborhood
¢ of o in E having o as its zero section. In more detail, given a complete
Riemannian metric for E we can find such a vector bundle neighborhood
structure on the open subbundle & of E whose fiber at t is the ball of
radius € about o(t) in Ey, provided that € is chosen smaller than the
injectivity radius for F; at o(t) for allt € I.

11.1.10. Corollary. C°(FE) is the union of the C°(¢) for all VBN &
of E. In fact, if 59 € C°(E) and U is a neighborhood of oy in E then
there is a VBN & of o¢ with £ C U.

Proor. Without loss of generality we can assume that U has compact
closure. Choosee > 0 lessthan theinjectivity radiusof E, ., ateforale € U,
and such that the disk of radius 2¢ about o (¢) in E; isincluded in U for all
t € 1. Choose asmooth section o of E suchthat for al ¢ € I the distance from
o(t)toog(t) in E; islessthan e. Then by the Theorem we canfindaVBN ¢ in
E having o as zero section and with fiber at ¢ the ball of radius e about o (¢) in
E;. Clearly this¢ isaVBN of 0. =

11.1.11. Definition. If E isasmooth fiber bundle over I then we definea
smooth Banach manifold structure for C°(E) by requiring that, for each VBN
¢ in E, the Banach space C°(¢) is an open submanifold of C°(E). We define
H,(F)tobetheunionof the H; (&) for al VBN ¢ in E, and similarly we define
a Hilbert manifold structure for H; (FE) by requiring that, for each such &, the
Hilbert space H, (&) is an open submanifold of H; (E).

11.1.12. Remark. To see that this definition indeed makes C°(FE) into
a smooth manifold, let o € C°(E) and let & and &, be two vector bundle
neighborhoods of o in E. It will suffice to find an open neighborhood O of
o in C°(E) that isincluded both in C°(¢;) and in C°(&3), and on which both
C°(&1) and C(&2) induce the same differentiable structure. But by the VBN
Existence Theorem thereisa VBN 7 of ¢ that isincluded in the intersection of
¢ and &, and by the above Proposition the Banach space C(n) is a smooth
open submanifold both of C°(&;) and of C°(&3). A similar argument works for
H,.

11.1.13. Theorem. Let E and F be two smooth fiber bundles
over I and let ¢ : E — F be a smooth vector bundle morphism. Then
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o+ @oo is a smooth map C°(p) : CY(E) — C°(F) and restricts to a
smooth map Hi(yp) : Hi(E) — H{(F).

Proor. Given asection ¢ of £ and aVBN 7 of poo in F, we can,
by the VBN Existence Theorem, find a VBN ¢ of £ in E with ¢(§) C n. By
definition of the differentiable structureson CY(E) and C°(F) it will suffice to
show that o +— o o maps C°(¢) smoothly into C°(n). But this follows from
an earlier Theorem. The same argument worksfor H;. =

11.1.14. Remark. Wenotethat wehavenow reached our goal of extending
H, to afunctor from FB(7) to Mfld.

11.1.15. Corollary. If E is a smooth (closed) subbundle of F' then
CY(E) is a smooth (closed) submanifold of C°(F) and H,(E) is a smooth
(closed) submanifold of Hy(F).

11.1.16. Remark. It is clear from the definition of the differentiable
structure on C°(E) and from the construction of VBN'’s above that if o is a
smooth section of afiber bundle £, then T'(C°(E)),,, thetangent spaceto C°(E)
at o, iscanonically isomorphicto C°( E7), whereasabove E° denotesthevector
bundle o*(T'F(FE)) over I. If ¢ : E — F isasmooth fiber bundle morphism
and C°(p)(o) = 7 then clearly D¢y induces a vector bundle morphism ¢ :
E° — FT and C°(¢?) : C%(E7) — C°(F7) is D(C°(p)),, the differential
C°(p) at 0. Similarly T(H,(E)), = Hy(E®) and D(Hi(¢))s = Hi(").

11.1.17. Remark. If M isany smooth manifold then I x M isasmooth
fiber bundle over I and of course we have a natural identification of C°(1, M)
with CO(I x M). Thus C°(I, M) becomes a smooth Banach manifold. Simi-
larly H, (I, M) iswell-defined and has the structure of a smooth Hilbert man-
ifold. If M isaregularly embedded smooth (closed) submanifold of N then
I x N isasmooth (closed) subbundleof 7 x N and hence C°(I, M) isasmooth
(closed) submanifold of C°(1, N') and Hy (I, M) isasmooth (closed) submani-
foldof H1(I, N). Inparticular if M isembedded asaclosed submanifold of RN
then H, (I, M) is aclosed submanifold of the Hilbert space H(I,R") and so
becomes a complete Riemannian manifold in the induced Riemannian metric.
Thiswill be important for our later applications to the calculus of variations.

11.2. Geodesics

Let X = I = [0,1], Y acomplete Riemannian manifold, P and ) two
pointsof Y, and My = Im(I,Y") the space of all immersionso : I — Y such
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that o(0) = P and (1) = Q. We will consider two Lagrangians. Thefirstis
defined by L(o) = ||o’(s)]|, so the corresponding functional isthe arc length :

(o) = / o (s)]] ds,

and acritical point of £ iscalled ageodesic of Y joining P and (). The second
Lagrangian is the energy density F (o) = (o’,0’), and £ on M, denotes the
corresponding energy functional:

In what follows we will use the functional £ as a mode, illustrating the five
step program of the Introduction that shows abstract Morse Theory appliesto a
particular Calculusof Variationsproblem. Inthe course of thiswewill seethat £
and £ in acertain sense have “the same” critical points so wewill rederive some
standard existence theorems for geodesics. Critical points of £ are sometimes
called harmonic maps of I into Y, but as we shall see they are just geodesics
parametrized proportionally to arc length.

First we compute VE by using local coordinates. To simplify the notation
a little we will adopt the so-called “Einstein summation convention”. This
means that a summation is implicit over the complete range of a
repeated index. For example if T;; isan n x n matrix then Trace(T') =
Tii =Yy iy Ty Supposex = (z1,...,x,) isalocal coordinate system of M,
and write x;(s) = z;(o(s)), and ds* = g;; dz; dz;. Then in this coordinate
system

E(o) = E(x, ') = gy (x)2}).

So writing g;; 1 = g‘g’c’: , the Euler-Lagrange equation is given by

OF

(9.(172'
a0
~ dsOox!
= 2(gij’;)

AW !
= 20ij kT T; + 20i57;

! !/
9kl,iTpT; =

/ / ! ! 12
= Gil kTT] T Gik 1T Ty, + 2Gi5T5

1
gijxi + §{gz‘l,k + Gikg — Grii} Tpry =0 (11.2.1)
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Let (¢%) denote the inverse of the matrix (g;;). Multiplying both sides of
(11.2.1) by ¢"™ and summing over i, we get
1.
Ty, + §gzm{gil,k + Gikg — 9ri,i} T = 0.

Let I'}; be the Christoffel symbols associated to g, defined by:

) 0
Ve (a—xl) =T g

where V isthe Levi-Civita connection for g. Note that

o 0 0 o 0
Gijk = afllk;<8f13i, 6xj> = V%<8—xz’8—x]>

Then direct computation, using that that V is torsion free and compatible with
the metric, gives

1.
= §gzm{gil,k + Gikl — Gkli}-

So the Euler-Lagrange equation for £ inlocal coordinates becomes
z + Tpjzix; = 0. (11.2.2)

Note that if 2 is the geodesic coordinate centered at o (s, ), then (11.2.2) isthe
sameas V,(,,)0’' = 0. So theinvariant formulation of (11.2.2) isV, 0’ = 0.

The second method to compute VE is using covariant derivatives. By the
Nash isometric embedding theorem we may assumethat Y isasubmanifold of
R™ with the induced metric. Let V denote the Levi-Civita connection of Y,
u € TY,, P, theorthogona projection of R™ onto T'Y,,, and £ atangent vector
fildonY. Then (V,&)(x) = P,(d&(u)). Suppose o; isa smooth curve in
My, withog = 0. Then

- dO’t
h — (E)tzo € (TMO)O-

isavector field along o and h(0) = A(1) = 0. We have

(0
dEw)| [, )
g = TR = /0 (o (s), B (s))ds,




11. The Cdculus of Variations 245

So the condition for o to be a critical point of £ isthat V,. ¢’ = 0, i.e,, that o’
isparallel aong o. This has an elementary but important consequence;

(B(o)) = 510", ') = 2V o',0') =0,

sothat if o is a critical point of €, then ||o’(s)|| is constant.

Next we want to discuss the relation between the two functionals £ and
L. But first it is necessary to recall some relevant facts about reparameterizing
immersions of 7 into Y. Let G denote the group of orientation preserving,
smooth diffeomorphismsof 7, i.e.,

G={u:T—Ilu0)=0,u(l)=1,4'(t) > 0for all ¢}.

Then G acts freely on My by u - o(t) = o(u(t)), and we call elements of
M belonging to the same orbit “ reparameterizations’ of each other. It isclear
from the change of variable formula for integrals that £ is invariant under
G,i.e, L(u-0) = L(o). Thus L is constant on G orbits, or in other words
reparameterizing a curve does not change its length. Let 3 denote the set of o
in M, such that ||o’|| is some constant ¢, depending on o. Recall that thisis
the condition that we saw above was satisfied automatically by critical points
of £. Itisclearly also the condition that the length of o between 0 and ¢ should
be a constant ¢ times ¢ (so in particular ¢ is just the length of o), and so we
call the elementsof X paths “parametrized proportionally to arc length”. Recall
that X is a cross-section for the action of G on M, that is, every orbit of G
meets X in a unique point, or equivalently, any immersion of I into Y can be
uniquely reparametrized proportionally to arc length. In fact the element s of
G that reparameterizes o € M, proportionally to arc length is given explicitly
by s(t) = ¢ fot |lo’(t)|| dt, where ¢ is the length of o. This means that we can
identify X with the orbit space M /G. Now since £ is invariant under G, it
follows that if o isacritical point of £, then the whole G orbit of o consists
of geodesics, and in particular the point where the orbit meets X is a geodesic.
S0, in searching for geodesics we may aswell restrict attention to . Moreover
it is clear (and we will verify this below) that to check whether o € Y isa
critical point of £, it suffices to check that it is a critical point of £|3. But on
¥, & = £2/2, so they have the same critical points. Thus:

11.2.1. Theorem. Let o :[0,1] — Y be a smooth curve. Then the
following three statements are equivalent:

(i) o is a critical point of the energy functional £,

(ii) o is parametrized proportionally to arc length and is a critical
point of the arc length functional L,

(iii) Vo' = 0.
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Now let’s check thisby direct computation. If o isacritical point of £ then

OE  (OE\'
Oox; \ox,)

But, since L = V'E,

oL
81‘1 N

oL\’
ox' )

oL (oL’
ox; \ox, )’
i.e., o isacritical point of L.

To prove the converse suppose o is a critical point of £ parametrized
proportionally to it arc length, i.e., L(c) = ¢, a constant, which implies that
L' = (L(s)) = 0. Since E = L?, we have

oE oL
8:171' =2 8%/

OE\’ oL\’
(ax;> = (ZLax;)

oL\’
—or (ax;) |
Hence o isacritical point of £.

A very important general principleisinvolved here. Geometrically natural
functionals J, such as length or area, tend to be invariant under “coordinate
transformations’. Thesameistruefor thefunctional sthat physicistsextremalize
todefinebasic physical laws. After al, thelawsof physicsshould not depend on
thesizeor orientation of themeasuring gaugesused to observeevents. Following
physics terminology that goes back to Hermann Weyl, a group of coordinate
transformations that leave a variational problem J invariant is referred to as
a “gauge group” for the problem. Now the existence of a large gauge group
usually has profound and wonderful consequences. But these are not always
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mathematically convenient. In fact, from our point of view, there is an obvious
drawback to alarge gauge group GG. Clearly if o isacritical point of .J then the
whole gauge orbit, Go, consists of critical points at the same level of J. But
remember that, if Condition C isto be satisfied, then the set of critical points at
agiven level must be compact. It followsthat having al the gauge group orbits
not relatively compact is incompatible with Condition C. Typicaly, the gauge
group G is alarge infinite dimensional group, and the isotropy groups G, are
finite dimensional or even compact, and thisis clearly bad news for Condition
C. In particular we can now see that the invariance of the length functional £
under the group G of reparameterizations of the interval means that it cannot
satisfy Condition C. The way around this problem is clear. We commonly
regard immersions of the interval that differ by a reparameterization as “the
same” geometric curve. Similarly, the physicist regards as “the same’ two
physical configurations that differ only by a gauge transformation. In general,
if f: M — Risavariationa functional invariant under a gauge group G,
then we think of points of M belonging to the same gauge orbit as being two
representations of the “the same” basic object. Thus it seems natural to carry
out our analysis on the space M /G of gauge orbits and try to verify Condition
C there. Since f is G-invariant, it gives awell defined function on M /G. But
unfortunately M /G isin genera not a smooth manifold. It is possible to do
a reasonable amount of analysis on the orbit space, despite its singularities;
for example if M is Riemannian and G acts isometrically then V f is clearly
a G-invariant vector field, so that the flow (; it generates will commute with
the action of G and give a well defined flow on the orbit space. Nevertheless
experience seem to show that it isusually better not to “divide out” the action of
G explicitly. Thefollowing definition clearly capturesthe notion of f satisfying
ConditionCon M /G, without actually passing to the possibly singular quotient
space:

11.2.2. Definition. Let M be a Riemannian manifold, G a group of
isometries of M, and f : M — R asmooth G-invariant function on M. We
will say that f satisfies Condition C modulo G if given asequence {z,} in
M suchthat | f(z,)|isboundedand ||V f,.. || — 0, thereexistsasequence {g,, }
in G such that the sequence {g,,z,, } has a convergent subsequence.

If M is complete and f is bounded below, the proof in section 9.1 that
the flow generated by —V f is a positive semigroup generalizes easily to the
casethat f satisfies Condition C only modulo agauge group G, so the First and
Second Deformation Theorems are also valid in this more general context.

In actual practice, instead of showing that afunctional .J satisfies Condition
C modulo a gauge group G directly, there are several methods for implicitly
dividing out the gauge equivalence. One such method is to impose a so-called
“gauge fixing condition” that defines a “cross-section” of M, i.e., a smooth
submanifold X of M that meets all the gauge orbits, and show that .J restricted



248 Part 11 Critical Point Theory

to 3 satisfies Condition C. Another approach isto look for afunctional 7, that
“breaks the gauge symmetry” (that is, 7 is not G-invariant), and yet has “the
same” critical points as J, in the sense that every critical point of 7 isalso a
critical point of .J, and every G-orbit of critical points of J contains a critical
pointof 7. All thisiselegantly illustrated by the length functional £; the energy
functional £ breaksthe reparameterization symmetry of £, and neverthelesshas
the“thesame” critical pointsas £. Theappropriategaugefixing conditioninthis
caseis of course parameterization proportionally to arc length. But best of al,
these strategies actually succeed inthis casefor, aswe shall now see, the energy
functional does satisfy Condition C on an appropriate Sobolev completion of
M.

We now begin carrying out the five steps mentioned in the Introduction.
First we discuss the completion M of M, and the extension of £ to M. Recall
that we are assuming that Y is isometrically imbedded in R™. Since Y is
complete, itisclosed in R™ and it follows from Theorem 11.1.5that H;(I,Y")
is a closed submanifold of the Hilbert space H, (1, R™). Herethe H;-norm is
defined by

1
lollf = ||0(0)|!3+/0 lo” (£)1*dt.

Clearly

M={oce Hi(L,Y)]|o(0) =P, o(1) =Q}
isasmooth, closed codimension 2m submanifold of H; (1, Y") (becausethemap
o+ (0(0),0(1)) of Hi(I,Y) into R™ x R™ isasubmersion), and soitisa
complete Riemannian manifold. It iseasily seen that £ naturally extendsto M.
Forif o € H,(I,R™),then&(o fo o', 0")ds isawell-defined extension of
€to Hy(I,R™), and |||} = Ha( )3 + &(0). Since both ||} and [|o(0)]J3

are continuous quadratic forms on H; (I, R™), they are smooth, and so is €.
Hence & = S\M is smooth. £ is clearly bounded from below by 0.

11.2.3. Definition. A critical point of £ on M iscalled a harmonic map
of 7 intoY joining P to Q.
Note that for o € M, we have

TM, = {v e Hi(I,R™) | v(t) € TY, 4, v(0) = v(1) = 0},

d€y(v) = (0",0")0 = (VE(0), v},

where V&(o) isin T M, such that (Vé’(a)) = o' as L? functions. If o is
smooth then by integration by parts VE (o) = =V, (o).

We may assumethat 0 € Y and P = 0. Thus the elements of M are
Hy-mapso : I — R" withim(o) C Y, 0(0) =0,0(1) =Q and

E(o) = lloli = fo,
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the distance function from 0.
Next we provethat £ satisfies condition C. Since smooth sections are dense
in M, it will suffice to show that given a sequence {o,,} € M, such that

E(on) = HUnH% < ¢y and VE(o,) — 0in Hy
then {c,, } has a convergent subsequence in M. Note that

TM,, = {h € Hi(I,R™) | h(0) = h(1) = 0, h(t) € TY,, 1},

1
dés, (h) = —/ (P, (o), h)dt = (VE(oy),h)1, YheTM,,.
0

So, by the Schwarz inequality, if h € Hy(I, R™) and h(0) = h(1) = 0, then
we have
[(Por, (07), h)ol < IVE(n) IRl (11.2.3)

Since M isclosedin H (I, R™), it will suffice to show that some subsegquence
(still denoted by {0, }) satisfies

Han - Um”% — 0.

Since {o,,} is bounded in H;(I,R™) and the inclusion of H;(I,R™) into
Co(I,R™) iscompact (Theorem 11.1.4), we can assume

llon — 0mlleo — 0.

Note that

||‘7n - Um”% = <‘77/w (Un - Um)/>0 - <0';n7 (Un - Um)/>07

so it will suffice to show that

(o (00 — ) )o — 0.

Since the o,, are smooth and o,, — o,,, vanishes at 0 and 1, we can integrate by
parts and the latter is equivalent to

(o) (opn —0m))o — 0.

Now, since o/, istangentto Y, P, o/ = o/, (recal that x — P, isthe Gauss
map of Y, i.e., P, isthe orthogonal projection of R" onto T'Y,,, and P, ¢’ isthe
map t — P,)o’(t)). Thus

" __ /N / / 12
Un - (Pﬁnan) - Panan + PUnan‘
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Therefore we will be finished if we can prove the following two facts:
(A) (P, 00 (0n —om))o| — 0,

onYno

(B) (P, ol (on —om))o| — 0.

On-“n»

Asfor (A), by Holder’sinequality we have

(P 0t (00 = 0m))ol < I1Ps ol lon — omllze.
Recallingthat ||, — 0| 0o — 0, itwill sufficetoshow || P, o7, || .+ isbounded.
By the Schwarzinequality, itwill sufficetoprove || P, ||z and||o7, ||, = |lon 1
are bounded. The latter istrue by assumption, and since P, = dF,, oo, and
dP is bounded on a compact set, P, isbounded. Since o,, — o, vanishes at
0 and 1 and is bounded in the H;-norm, statement (B) follows from (11.2.3).

It remains to prove regularity. Note that equation d&, (v) = (o’,v")g = 0
forv € T M, isequivalent to

(0, (Pyv))o = 0 for all v € Hy(I,R™). (11.2.4)

Since Im(P) is contained in the linear space of self-adjoint operators on R™,
(P,)" isdso self-adjoint, and by chain rule, we have

(0, (Pov)')o = (0, (Ps)'(v) + Po(v))o
={(P,) (c"),v)0 + (Py(c"),v")o (11.2.5)
={((P,) (c"),v)o + (', v")0.

Sinceo € H1(I,R™), o iscontinuous and ||o ||~ is bounded.
By thechainrule (P,)’(¢") issmooth in o and quadraticin o/, and so it is
in L. Then

() = /0 (P,) (')ds (11.2.6)

isin C°. Substituting (11.2.6) into (11.2.5) and using integration by parts, we
obtain

<’7/7 U>0 + <0J7 UI>O = <OJ - 771}/)0 =0.

It follows that o’and ~ differ by a constant. Since ~ is continuous, o is C*.
We can now “pull ourselves up by our own bootstraps’. It follows from the
definition of v that if 0 isC* (k > 1), then+’ isC*~!, and hencey isC*. Then
o’ isaso C*, so o isC**1. By induction, o is smooth.

We can now apply our general theory of critical points to the geodesic
problem.

11.2.4. Theorem. Given any two points P and @) of a complete
Riemannian manifold Y, there exists a geodesic joining P to () whose
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length is the distance from P to (). Moreover any homotopy class of
paths from P to () contains a geodesic parametrized proportionally to
arc length that minimizes length and energy in that homotopy class.

PrOOF. Sinceitisthe energy &, rather than the length £, that satisfies
Condition C, our genera theorem really only applies directly to £. But recall
that on the set ¥ of paths parametrized proportionally to arc length, £ = V€.
Now since any path o has a reparameterization & in 3 with the same length, it
followsthat inf(£) =inf(v/£). And sinceweknow £ must assumeits minimum
at apoint o of %, it follows that thiso isalsoaminimumof £. =

So far we have considered the theory of geodesicsjoining two fixed points.
Thereisjust asimportant and interesting a theory of closed geodesics. For this
wetakefor X nottheinterval I, but rather thecircleS', so our space M|, consists
of the smooth immersions of S' into Y. Asusual we will identify a continuous
(or smooth) map of St with amap of I that hasacontinuous (or smooth) periodic
extension with period one. In this way we regard the various spaces of maps
of thecircleinto R™ (and into Y") as subspaces of the corresponding spaces of
maps of 7 into R™ (and into Y). This allows us to carry over al the formulas
and norms defined above. In particular we have the formula:

lollF = llo(0)]* + £(o).

At this point there is a small but important difference in the theory. If we
consider immersions of I joining P to @, then o(0) = P, is constant, hence
bounding the energy bounds the H; norm. But for the case of immersions of
S' into Y, the point ¢ (0) can be any point of Y, so if we want to insure that
lo(0)||? is bounded then we must require that Y is bounded, and
hence compact. Once this extra requirement is made, bounding the energy
again bounds the H; norm, and the whole development above works exactly
the same for immersions of S asit did for immersions of 1. In particular:

11.2.5. Theorem. If Y is a compact Riemannian manifold, then
given any free homotopy class a of maps of S' into Y there is a repre-
sentative o of a that is a closed geodesic parametrized proportionally to
arc length and that minimizes both length and energy in that homotopy
class.

The requirement that Y be compact is real, and not just an artifact of the
proof. For example, consider the surfaceof revolutionin R® obtained by rotating
the graph of y = % about the z-axis. It is clear that the homotopy class of the
circles of rotation has no representative of minimum length or energy.
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11.3. Non-linear eigenvalue problem

Let (V,(, )) beaHilbert space. Let J, F': V — R be smooth functions,
1 aregular vaue of F, and M the level hypersurface F~1(1) of V. Then by
the Lagrange multiplier principle, u € V isacritical point of J| M if and only
if thereisaconstant \ such that

VJ(u) = AVF(u). (11.3.1)

If F(u) = (u,u) and J isthe quadratic function defined by J(u) = (P(u),u)
for some bounded self-adjoint operator P on V, then (11.3.1) becomes the
eigenvalue problem for the linear operator P:

P(u) = A\u.

Soif either F or J isquadratic, we will refer (11.3.1) asthe non-linear eigen-
value problem.

In this section wewill study asimple non-linear eigenval ue problem of this
type. But first we need to review alittle hard analysis.

Let X be acompact, smooth n-dimensional Riemannian manifold, V the
Levi-Civita connection for g, and dv the Riemannian volume element. For
each p with 1 < p < oo we associate a Banach space L? (X)), the space of all
measureable functions v : X — R such that

Jull?, = [ fut@)p do(e) < oo,

Next we introduce the L7 -norm on C'*°(X) asfollows:

k
i, =3 [ 9@ dota).

11.3.1. Definition. For 1 < p < oo and each non-negative integer k, we
define the Sobolev Banach space L7 (X) to be L?(X) if k = 0, and to be the
completion of C°°(X') with respect to the Sobolev L% -norms for positive k.

The Sobolev spaces L? (X)) are clearly Hilbert spaces. It isnot difficult to
identify L? (X) with the space of measureable functionsthat have distributional
derivatives of order < kin LP,

Another family of Banach spacethat will beimportant for usarethe Holder
spaces, C**(X ), where k is again a non-negative integer and 0 < o < 1. Itis
easy to describe the space C°*(X); it consists of all mapsw : X — R that are
“Holder continuous of order «”, in the sense that
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where d(z, y) isthedistance of z andy in X. Thenorm || || , , for the Holder
space C%<(X) is defined by

[ull oo = llulloo + Na(w),

where as usual |||/, denotesthe “sup” norm of u, ||u|lcc = max,ex |u(x)].

The higher order Holder spaces can be defined in a similar manner. Let
X1,..., X, besmooth vector fields on X such that X;(z),..., X,,(z) spans
TX, a each point z € X. We define C*<(X) to be the set of u € C*(X)
such that

NQ(VRU) = Z Na(vku(X’le7X’Lk>) < 0,

(i1,erik)
and we define the C*© norm of such au by:

lull e = lltll i + Na(VFu),

ck,x

where the C* norm, || | & » isa@susual defined by:

k .
lull e = D 1Vl oo
=0

Let V and W be Banach spaceswith || ||,, and || ||,, respectively. If V' is
alinear subspace of W, then proving the inclusion V' — W is continuous is
equivalent to proving an estimate of the form ||v||,, < C||v||,, foral vinV.

There are anumber of such inclusion relationships that exist between cer-
tain of the LY (X) and C*(X). These go collectively under the name of
“embedding theorems™ (for proofs see [GT], [So], [Am], [Cr], [My]). They
play a central rolein the modern theory of PDE.

11.3.2. Sobolev Embedding Theorems. Let X be a smooth,
compact n-dimensional Riemannian manifold.

(1) Ifk— % >1—% and k > 1, then Lj(X) is contained in L} (X) and
the inclusion map is continuous. If both inequalities are strict then this
embedding is even compact.

(2) If k — 2 > 1+ a, then L}(X) is contained in C*(X) and the in-
clusion map is continuous. If the inequality is strict then this embedding

is even compact.

11.3.3. Corollary. Ifp < -2% then L}(X) is contained in LP(X). If
the inequality is strict then this embedding is even compact.
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In the following we let ||u||, denote the norm ||u||,,. Sincetheinclusion
i:L3(X) — Lo (X)) iscontinuous, there is a constant C' such that

[ull 2o, < C([[Vull2 + [Jull2)-
Let ¢(X) denote the infimum of A > 0 for which thereexistsa B > 0 so that

oo, < AVl + Bl

for al u € L3(X). It turns out that ¢(X ) depends only on the dimension n of
X, that is, (see [Au]):

11.3.4. Theorem.  There is a universal constant c¢(n) such that for
any compact Riemannian manifold X of dimension n and any € > 0,
there is a b(e) > 0 for which the inequality

lull%2e_ < (e(n) + &) Vull3 + () [ull3
holds for all u in L3(X).

This constant ¢(n) is referred to as the “best constant for the Sobolev
Embedding Theorem™.

We now state the standard a priori estimatesfor linear elliptic theory (for
proofs see[Tr]):

11.3.5. Theorem. Let (X,g) be a compact, Riemannian manifold,
and Au = f.

(1) If f € C**(X) then u € C*t2%(X).

(2) Ifp>1and f € L}(X) thenu € L] ,(X).

For our discussion below, we aso need the following Theorem of Brezis
and Lieb [BL]:

11.3.6. Theorem. Suppose 0 < g < oo and v,, a bounded sequence
in LY. If v,, — v pointwise almost everywhere, then v € L? and

/ |v |1 dv—/ |v, — 0|4 dv—>/ |7 dv.
X X X

Now suppose 2 < p < o(n) = 2. Then by Corollary 11.3.3, L?(X) is
continuously embedded in L?(X). So

M= {ueI3(X)]| /X () |? do(z) = 1)
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defines a closed hypersurface of the Hilbert space L? = L?(X). The tangent
plane of M at u is

TMu = {p € LT | {[ul"~*u, p)o = 0},

where

(u,<p>o=/ up dv
X

isthe L2-inner product.
Let f : X — R beagiven smooth function, and define J : M — R by

() = /X IVa(@)| + f(2)u?(z) do. (11.3.2)

By the Lagrange multiplier principle, the Euler-Lagrange equation of J on M
IS
Au — fu = MulP~?u, (11.3.3)

for some constant \. Multiplying both sides of (11.3.3) by « and integrating
over X weseethat A = —J(u). So
Au— fu= —J(u)uPu. (11.3.4)

The study of this equation is motivated by the following:

11.3.7. Yamabe Problem. Let (X, g) beacompact, Riemannian man-
ifold. Is there a positive function » on X such that the scalar curvature of

g= wnz g isaconstant function? Let f denotethe scalar curvature function of
g. Thenit followsfrom astraight forward computation that the scalar curvature

of gis
{4(n_1) Au + fu} =

n—2

So the Yamabe problem is equivalent to finding a positive solution to equation
(11.3.3) with p = o(n) = -2 (for details see [Au],[Sc1],[Sc2]).

Itiseasily seen that
dJ,(v) = / (Vu, Vo) + fuv dv forv e TM,,
X

If v e L2, thenv — (|u|P~2u,v)ou € TM, and

dJu(v = ([ul""?u, v)ou) = —J (W) {[ul~*u, v)o

+/ (Vu, Vv) + fuv dv’ (11.3.5)
X
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By Holder's inequality, for u € M (i.e, ||lul| , = 1), we have

/ u? dv < |[u?||p||1]| 2, = (vol(X))"7 . (11.3.6)
X P2

Letdb = ||f]|c- Then
J(u) > —b/ u?dv,
M

and J is bounded from below on M. Note that
IVull2 = J(u) - /X fudo < J(u) + || floollul2 (11.3.7)

The following result and the proof are essentially in Brezis and Nirenberg
[BN].

11.3.8. Theorem. Let o(n) = -22.

(1) If p < o(n) then J satisfies condition C and critical points of J are
smooth.

(2) If p = o(n), c(n) is the best constant for the Sobolev embedding
theorem, and o < 1/c(n), then the restriction of J to J~1((—o0,ql)

satisfies condition C and critical points of J in J~1((—o0, a]) are smooth.

PRrROOF. Inour discussion below n = dim(X) isfixed.
First we will prove condition C. Suppose u,,, € L%, J(u,,) < cand

VJ(tup) —0  in L2 (11.3.8)

We may assume that
J(um) — co < c. (11.3.9)

Since J(u,,) is bounded, it follows from (11.3.6) and (11.3.7) that {w,,} is
boundedin L2. By the Sobolev embedding theorem 11.3.3, {u,,, } isboundedin
L™ and hasaconvergent subsequencein L?. Sinceabounded setinareflexive
Banach spaceisweakly precompact, thereisau € L? and asubsequence of .,
converging weakly to « in L?, so by passing to a subsegquence we may assume
that:

|t — u||L2 — 0, (11.3.10)
{u,m} s bounded in L7, (11.3.11)
Uy —u — 0 weakly in L2 (11.3.12)

U, — U almost everywhere. (11.3.13)
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It follows that

(Um —u,u)p2 = /){(V(um —u), Vu) + (tp, — w)u dv — 0,

/ (U, — u)u dv — 0.
X
So we have (V(u,, — u), Vu)y — 0, which implies that

(Vm, Vuyo — [[Vul?,,
L

190 = I, = {19, = 1702, } 0
In particular, we have
IVumllz — (Vm, Vu)o — ||V (tm — u)||3 — 0. (11.3.14)

Since C*°(X) isdensein L?, we may further assumetheu,,, are smooth. Using
(11.3.8), we have

dJ., (vm) — 0, if {v,,}is bounded in L7.
Since u,, — u isbounded in L2, by (11.3.5) and the above condition we have

—J(um)<]um]p_2um, (um —u))o + (Vtm, V(tm — u))o

11.3.15
4 (Ftimy =)o — 0"

It follows from (11.3.9) (11.3.10) and (11.3.14) that
—o{|tm [P 2ty (U, — 1))o + ||V (U — u)||?, — 0. (11.3.16)

If p < o(n), then by Sobolev embedding theorem we may assume that
Uy, — uwin LP. By Holder’'sinequality,

([t [Pt i — who] < ]| . [t — u||Lp = [Jum — u||Lp — 0.
L

S0 ||V (um —u)l| , — 0, whichimpliesthat u,,, — win L? andu € M. This
proves condition C for case (1).
If p = o(n), then we want to prove that for a < 5, J restricts to

J71((—o00,a]) satisfies condition C. So we may assume ¢y < a. Since
{|tm|P~%u,, } isabounded sequencein L77, by passing to a subsequence we
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may assumethat { |t |P~2u,, } converges weakly to |u|P~2w in L7 1. So for
uel? = Lp T)* we have

/|Um\p 2umualfu—>/ |u|P™ 2uudv—/ |ulP dv,

(2t =)o = [ P = Mo 1= [ wd,
X X
By Theorem 11.3.6, we have
e —wll?, =1 [Jull?, < 1. (11.3.17)
S0 (11.3.16) gives
€m = —Co||tm — uHIZU + |V (up, — u)||22 — 0. (11.3.18)

Choose ap such that o < ag < ( 5 Set z,, = ||um — uHLp. Using Theorem
11.3.4 and (11.3.10), we obtain

—coxb + aoxfn <€, — 0.

Since ¢y < a < ay, thereisaconstant 6 > 1 (only depends on ¢(n) and «)
such that
(i) o(z) = —cox? + apz® > 00on [0, 4],
(i) if t,, € [0,0] and ©(t,,) < by, — O, thent,,, — 0.
Because of (11.3.17), we may assume that z,,, € [0, §]. So

[t = ull , = 0.

It then follows from (11.3.18) that u,,, — u — 0 in L?, which proves Condition
Cfor case (2).

Next we prove regularity for case (1). For simplicity we will discuss the
specia casen = 3andp = 4 < o(3) = 6. Supposeu € L7 isacritical point
of J then Au = fu + Mu? € L? where A = —J(u). So by Theorem 11.3.5
(2, u € L3 Since2 —3/2 = 1/2,u € C* if a < 3. Applying Theorem
11.3.5(2), u € C?T*. Applying the same estimate repeatedly impliesthat v is
smooth. The general caseis similar (for example see [Au]).

Regularity for case (2) follows from Trudinger’'s Theorem ([Tr]). =

Now J(u) = J(—u), and M /Z, is diffeomorphic to the infinite dimen-
sional real projective space RP°. As aconsequence of the above theroem and
L usternik-Schnirelman theory (Corollary 9.2.11) that we have:

11.3.9. Theorem. Ifp < =% then there are infinitely many pairs
of smooth functions u on (X", g) such that

Au = fu+ NuP2u,
where A = —J(u).



Appendix.

We review some basic facts and standard definitions and notations from
the theory of differentiable manifolds and differential topology. Proofs will be
omitted and can be found in [La] and [Hi].

Manifold will always mean a paracompact, smooth (meaning C'°°) mani-
fold satisfying the second axiom of countability, and modeled on a hilbert space
of finite or infinite dimension. Only in the final chapters do we deal explicitly
with the infinite dimensional case, and before that the reader who feels more
comfortable in the finite dimensional context can simply think of all the mani-
folds that arise as being finite dimensional. In particular when we assume that
the model hilbert spaceisV/, withinner product ( , ) then the reader can assume
V=R'and(z,y) =z -y=> . Tili.

The tangent space to asmooth manifold X at = isdenoted by T X .., and if
F: X — Y isasmoothmap andy = F(z) then DF, : T X, — TY,, denotes
the differential of " at =. If Y is a hilbert space then as usual we canonically
identify 7Y, with Y itself. With this identification we denote the differential
of FatxbydF : TF, — Y. Inparticular if f : X — Risasmooth real
valued function on X then, for each = in X itsdifferentia df, : T X, — Risan
element of T* X, , the cotangent spaceto X at x. Alsoif X ismodelled on V/
and® : O — Visachartfor X atp, wehaveanisomorphismd®, : TX,, — V.
A Riemannian structure for X isan assignment to each = in X of a continuous,
positive definite inner product ( , ), on T'X ., such that the associated norm is
complete. If ® : O — V isachart as above then for each x in O thereisa
uniquely determined bounded, positive, self-adjoint operator g(x) on V' such
that for u,v € T X,

<u7 U, >$ = (g(m)dq)(u), d@(v»,

where ( , ) istheinner product in V. The Riemannian structure is smooth if for
each chart ® the map =z — g(x) from O into the Banach space of self-adjoint
operators on V' is smooth. (When V' = R" this just means that the matrix
elements g, () are smooth functions of x.)

For a Riemannian manifold X there is a norm preserving duality isomor-
phism ¢ — ¢ of T* X, with T'X ,,, characterized by ¢(u) = (u, ). Inparticular
if f: X — Risasmooth function, then the dual (df,.)" of df, is called the
gradient of f at x and is denoted by V f. The vector field V f plays a centra

rolein Morse theory, and we note that its characteristic property isthat for each

YinTX,,Yf o df (Y'), the directional derivative of f at x in the direction

Y,isgivenby (Y, V f,). It follows from the Schwarz inequality that if df, # 0
then, among al the unit vectors Y at z, the directional derivative of f in the
direction Y assumesits maximum, ||V |, uniquely for YV’ = 1< V f.
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We recall that given asmoothmap F': X — Y apoint z of X iscalled a
regular point of F'if DF, : TX, — TYp(, issurjective. Other points of X
are called critical points of F. A point y of Y iscaled a critical value of F
if F~1(y) contains at least one critical point of F'. Other pointsof Y are called
reqular values. (Note that if y isanon-vaue of F, i.e, if F~1(y) is empty,
then y is nevertheless considered to be a“regular value” of F'.) By the Implicit
Function Theorem if x is aregular point of F' and y = F'(z), then thereis a
neighborhood O of x in X such that O N F~(y) is a smooth submanifold of
X (of dimension dim(X)—dim(Y) whendim(X) < o). Thusif y isaregular
value of F' then F'~1(y) is a (possibly empty) closed, smooth submanifold of
X.

If X isan n—dimensional smooth manifold, then a subset S of X issaid
to have measure zero in X if for each chart ® : O — R" for X, ®(S N O) has
L ebesque measure zero in R™. Note that it followsthat S has no interior.

Morse-Sard Theorem. [DR, p.10] If X and Y are finite dimensional
smooth manifolds and F' : X — Y is a smooth map, then the set of
critical values of F' has measure zero in Y and in particular it has no
interior.

Corollary. If X is compact then the set of regular values of F' is open
and dense in Y.

If f: X — Risasmooth function and df,, # 0, then since R is one-
dimensiona, df, : TX, — R must be surjective, i.e., x is aregular value of
f. Thus for area valued smooth function the critical points are exactly the
pointswhere df,. iszero. Of coursewhen X is Riemannian we can equally well
characterize the critical points of f asthe zeros of the vector field V f.

Let X beasmooth Riemannian manifold, and M asmooth submanifold of
X with the induced Riemannian structure. If F': X — R isasmooth function
on X and f = F|M isitsrestriction to M then, at apoint « of M, df, isthe
restrictiontoT’ M, of dF,., andit followsfrom thisand the characterization of the
gradient above that V f,. isthe orthogonal projection onto 7'M, of VF,.. Thus
xisacritical point of f if and only if V f,. isorthogonal to 7'M .. Now suppose
c isaregular value of some other smooth, real valued function G : X — Rand
M = G~ 1(c). Then TM, =ker(dG,) = VG, hencein this case T M is
spanned by VG,.. This proves:

Lagrange Multiplier Theorem. Let F' and G be two smooth real
valued functions on a Riemannian manifold X, ¢ a regular value of G,
and M = G~Y(¢). Then x in M is a critical point of f = F|M if and
only if VF, = A\VG,for some real \.

Let Y beasmooth vector field onamanifold X. A solution curve forY is
asmooth map o of an openinterval (a,b) into X suchthat o’ (t) = Y, for all
t € (a,b). Itissaidto have initial condition zifa < 0 < bando(0) = x, and
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itiscaled mazimal if it isnot the restriction of a solution curve with properly
larger domain. An equivalent condition for maximality is the following: either
b = oo or elseo(t) hasno limit pointsast — oo, and similarly either a = —oco
or else o(t) hasno limit pointsast — —oo

Global Existence and Uniqueness Theorem for ODE. IfY is a
smooth vector field on a smooth manifold X, then for each x in X there
is a unique maximal solution curve of Y, o, : (a(x), f(x)) — X, having
x as initial condition.

For t € R we define D(p;) = {z € X | a(z) < t < B(z)} and
ot D(p) — X by pi(x) = 04(t). Then D(¢;) isopenin X and ¢, is
a difeomorphism of D(y;) onto itsimage. The collection {¢,} is called the
flow generated by Y, and we call the vector field Y complete if « = —oc and
8 = oo. Inthiscaset — ¢, isaone parameter group of diffeomorphisms of X
(i.e., ahomomorphism of R into the group of diffeomorphismsof X.
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